首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It is generally thought that pairing and recombination between the X and Y chromosome in eutherian mammals is important for the occurrence of normal meiotic division and the production of functional gametes. Microtus agrestis is one of the examples whose giant and heterochromatin-rich sex chromosomes fail to establish a durable association at any stage of the first meiotic division in males. In contrast, in females, synapsis starts in the euchromatic short arm and pairing progresses unidirectionally and continues until both X chromosomes have paired completely, as can be demonstrated by the use of fluorescence in situ hybridization with a sequence confined to the non-centromeric, gonosomal heterochromatin. However, compared with euchromatin, this association is apparently ephemeral and breaks off precociously in the pachytene and metaphase I stages. We demonstrate that a middle repetitive element is localized interspersed in the noncentromeric heterochromatin of both X and Y, except the telomeric region of the Y. No differences could be detected at the molecular level between male and female DNA, indicating that at least the bulk of these elements are organized in the same manner on the X and Y. Our data imply that the loss of synapsis and recombination between the X and Y might have preceded the process of heterochromatin amplification in the course of Microtinae evolution. Since asynapsed elements are particularly susceptible to DNA strand breaks during prophase I, DNA repair of double-strand breaks involving heterochromatic segments of the X and Y could have resulted in translocations of larger segments from the X to the Y or vice versa during the course of chromosome evolution of the gonosomes, explaining the homology at the molecular level between the heterochromatin of the asynaptic X and Y in M. agrestis.  相似文献   

3.
重组抑制是植物性染色体由常染色体进化而来的前提条件,性别决定位点区域发生的重组抑制使早期的性染色体发生了退化和分化。研究表明,重组抑制的产生和染色体上一系列行为的发生有着密切的关系,如重复序列的累积、异染色质化及DNA的甲基化。转座因子和卫星DNA等重复序列的累积使早期植物性染色体形态和分子结构发生了分化,同时还导致性染色体的异染色质化,抑制了性染色体间的重组的发生。文章综述了这一领域的进展,并对DNA甲基化在植物性染色体重组抑制形成过程中可能的作用进行了简要分析。  相似文献   

4.
The nucleotide sequence of the non-transcribed spacer (NTS) in the ribosomal DNA (rDNA) of Chironomus thummi thummi and Chironomus thummi piger, including major parts of the external transcribed spacer, is described. The NTS of the two subspecies are very different in length, (thummi, 7 kb, piger, 2 kb); this is due to the insertion into the NTS of C.th. thummi of a large cluster of highly repetitive DNA sequences which are not present in the NTS of C. th. piger. The repetitive sequences, called Cla elements, are present in high copy number elsewhere in the genome of C. th. thummi and, in lower copy number, in the genome of C. th. piger in which they are mainly in the centromeric regions. Sequencing of the NTS of thummi and piger yielded information on the junctions between the Cla element cluster and the original NTS sequence, as well as on the sequence of the integration site before the transposition has occurred. The integration site is characterized by a dA cluster at the one end and a dT cluster at the other.  相似文献   

5.
K. Hägele 《Genetica》1986,70(3):187-190
Chironomus th. thummi x Ch. th. piger hybrid males were backcrossed with Ch. th. thummi females. The salivary gland chromosomes of both sexes of the backcross progeny were then studied in respect to their pairing behavior. Region D3d-g of chromosome III showed sex specific pairing. It is concluded that within this D3d-g region a male sex determiner of Ch. th. piger is located and that the male is the heterogametic sex.  相似文献   

6.
The subspecies Chironomus thummi thummi and C. t. piger display dramatic differences in the copy number and chromosomal localization of a tandemly repeated DNA family (Cla elements). In order to analyze the evolutionary dynamics of this repeat family, we studied the organization of Cla elements in the related outgroup species C. luridus. We find three different patterns of Cla element organization in C. luridus, showing that Cla elements may be either strictly tandem-repetitive or be an integral part of two higher-order tandem repeats (i.e., Hinf[lur] elements, Sal[lur] elements). All three types of Cla-related repeats are localized in the centromeres of C. luridus chromosomes. This suggests that the dispersed chromosomal localization of Cla elements in C. t. thummi may be the result of an amplification and transposition during evolution of this subspecies. Received: 22 May 1996 / Accepted: 8 October 1996  相似文献   

7.
Battle of the Xs   总被引:4,自引:0,他引:4  
Females and males often exhibit conspicuous morphological, physiological and behavioral differences. Similarly, gene expression profiles indicate that a large portion of the genome is sex‐differentially deployed, particularly in the germ line. Because males and females are so fundamentally different, each sex is likely to have a different optimal gene expression profile that is never fully achieved in either sex because of antagonistic selection in females versus males. Males are hemizygous for the X chromosome, which means that recessive male‐favorable de novo mutations on the X chromosome are subject to immediate selection. In females, a recessive female‐favorable mutation on one of two X chromosomes is not available for selection until it becomes frequent enough in the local population to result in homozygous individuals. Given that most mutations are recessive, one would expect that genes or alleles favoring males should accumulate on the X chromosome. Recent microarray work in Drosophila and C. elegans clearly shows the opposite. Why is the X chromosome a highly disfavored location for genes with male‐biased expression in these animals? BioEssays 26:543–548, 2004. Published 2004 Wiley Periodicals, Inc.  相似文献   

8.
We examined unequal homologous DNA recombination between human repetitive DNA elements located on a yeast artificial chromosome (YAC) and transforming plasmid molecules. A plasmid vector containing an Alu element, as well as a sequence identical to a unique site on a YAC, was introduced into yeast and double recombinant clones analyzed. Recombination occurs between vector and YAC Alu elements sharing as little as 74% identity. The physical proximity of an Alu element to the unique DNA segment appears to play a significant role in determining the frequency with which that element serves as a recombination substrate. In addition, cross-over points of the recombination reaction are largely confined to the ends of the repetitive element. Since a similar distribution of crossover sites occurs during unequal homologous recombination in human germ and somatic tissue, we propose that similar enzymatic processes may be responsible for the events observed in our system and in human cells. This suggests that further examination of the enzymology of unequal homologous recombination of human DNA within yeast may yield a greater understanding of the molecular events which control this process in higher eukaryotes.  相似文献   

9.
Recent molecular and genomic studies carried out in a number of model dioecious plant species, including Asparagus officinalis, Carica papaya, Silene latifolia, Rumex acetosa and Marchantia polymorpha, have shed light on the molecular structure of both homomorphic and heteromorphic sex chromosomes, and also on the gene functions they have maintained since their evolution from a pair of autosomes. The molecular structure of sex chromosomes in species from different plant families represents the evolutionary pathway followed by sex chromosomes during their evolution. The degree of Y chromosome degeneration that accompanies the suppression of recombination between the Xs and Ys differs among species. The primitive Ys of A. officinalis and C. papaya have only diverged from their homomorphic Xs in a short male-specific and non-recombining region (MSY), while the heteromorphic Ys of S. latifolia, R. acetosa and M. polymorpha have diverged from their respective Xs. As in the Y chromosomes of mammals and Drosophila, the accumulation of repetitive DNA, including both transposable elements and satellite DNA, has played an important role in the divergence and size enlargement of plant Ys, and consequently in reducing gene density. Nevertheless, the degeneration process in plants does not appear to have reached the Y-linked genes. Although a low gene density has been found in the sequenced Y chromosome of M. polymorpha, most of its genes are essential and are expressed in the vegetative and reproductive organs in both male and females. Similarly, most of the Y-linked genes that have been isolated and characterized up to now in S. latifolia are housekeeping genes that have X-linked homologues, and are therefore expressed in both males and females. Only one of them seems to be degenerate with respect to its homologous region in the X. Sequence analysis of larger regions in the homomorphic X and Y chromosomes of papaya and asparagus, and also in the heteromorphic sex chromosomes of S. latifolia and R. acetosa, will reveal the degenerative changes that the Y-linked gene functions have experienced during sex chromosome evolution.  相似文献   

10.
A mapped set of DNA markers for human chromosome 15   总被引:8,自引:0,他引:8  
A primary genetic linkage map for human chromosome 15 has been constructed from 16 arbitrary DNA markers genotyped in 59 large reference families. The map spans a genetic distance of 146 cM in males and 187 cM in females. The ratio of female/male genetic distance was approximately 2.1 overall within the region of the chromosome covered by our map, but three segments showed a significant male excess in recombination frequency. A subset of seven of the linked markers would be enough to detect linkage of a genetic defect within the mapped region of chromosome 15, if at least 48 phase-known meioses in affected families were available for analysis.  相似文献   

11.
Two models, Z Dosage and Dominant W, have been proposed to explain sex determination in birds, in which males are characterized by the presence of two Z chromosomes, and females are hemizygous with a Z and a W chromosome. According to the Z Dosage model, high dosage of a Z-linked gene triggers male development, whereas the Dominant W model postulates that a still unknown W-linked gene triggers female development. Using 33 polymorphic microsatellite markers, we describe a female triploid Kentish plover Charadrius alexandrinus identified by characteristic triallelic genotypes at 14 autosomal markers that produced viable diploid offspring. Chromatogram analysis showed that the sex chromosome composition of this female was ZZW. Together with two previously described ZZW female birds, our results suggest a prominent role for a female determining gene on the W chromosome. These results imply that avian sex determination is more dynamic and complex than currently envisioned.  相似文献   

12.
The canonical model of sex‐chromosome evolution assigns a key role to sexually antagonistic (SA) genes on the arrest of recombination and ensuing degeneration of Y chromosomes. This assumption cannot be tested in organisms with highly differentiated sex chromosomes, such as mammals or birds, owing to the lack of polymorphism. Fixation of SA alleles, furthermore, might be the consequence rather than the cause of recombination arrest. Here we focus on a population of common frogs (Rana temporaria) where XY males with genetically differentiated Y chromosomes (nonrecombinant Y haplotypes) coexist with both XY° males with proto‐Y chromosomes (only differentiated from X chromosomes in the immediate vicinity of the candidate sex‐determining locus Dmrt1) and XX males with undifferentiated sex chromosomes (genetically identical to XX females). Our study finds no effect of sex‐chromosome differentiation on male phenotype, mating success or fathering success. Our conclusions rejoin genomic studies that found no differences in gene expression between XY, XY° and XX males. Sexual dimorphism in common frogs might result more from the differential expression of autosomal genes than from sex‐linked SA genes. Among‐male variance in sex‐chromosome differentiation seems better explained by a polymorphism in the penetrance of alleles at the sex locus, resulting in variable levels of sex reversal (and thus of X‐Y recombination in XY females), independent of sex‐linked SA genes.  相似文献   

13.

Background

The papaya Y chromosome has undergone a degenerative expansion from its ancestral autosome, as a consequence of recombination suppression in the sex determining region of the sex chromosomes. The non-recombining feature led to the accumulation of repetitive sequences in the male- or hermaphrodite-specific regions of the Y or the Yh chromosome (MSY or HSY). Therefore, repeat composition and distribution in the sex determining region of papaya sex chromosomes would be informative to understand how these repetitive sequences might be involved in the early stages of sex chromosome evolution.

Results

Detailed composition of interspersed, sex-specific, and tandem repeats was analyzed from 8.1 megabases (Mb) HSY and 5.3 Mb corresponding X chromosomal regions. Approximately 77% of the HSY and 64% of the corresponding X region were occupied by repetitive sequences. Ty3-gypsy retrotransposons were the most abundant interspersed repeats in both regions. Comparative analysis of repetitive sequences between the sex determining region of papaya X chromosome and orthologous autosomal sequences of Vasconcellea monoica, a close relative of papaya lacking sex chromosomes, revealed distinctive differences in the accumulation of Ty3-Gypsy, suggesting that the evolution of the papaya sex determining region may accompany Ty3-Gypsy element accumulation. In total, 21 sex-specific repeats were identified from the sex determining region; 20 from the HSY and one from the X. Interestingly, most HSY-specific repeats were detected in two regions where the HSY expansion occurred, suggesting that the HSY expansion may result in the accumulation of sex-specific repeats or that HSY-specific repeats might play an important role in the HSY expansion. The analysis of simple sequence repeats (SSRs) revealed that longer SSRs were less abundant in the papaya sex determining region than the other chromosomal regions.

Conclusion

Major repetitive elements were Ty3-gypsy retrotransposons in both the HSY and the corresponding X. Accumulation of Ty3-Gypsy retrotransposons in the sex determining region of papaya X chromosome was significantly higher than that in the corresponding region of V. monoica, suggesting that Ty3-Gypsy could be crucial for the expansion and evolution of the sex determining region in papaya. Most sex-specific repeats were located in the two HSY expansion regions.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-335) contains supplementary material, which is available to authorized users.  相似文献   

14.
The feasibility of determining sex by analysing deoxyribonucleic acid (DNA) with two probes specific for Y chromosomes was shown using DNA obtained from samples of blood from 30 non-related males and females of different ethnic origin. The DNA was spotted on nitrocellulose filters and hybridised with both a repetitive (P1) and a unique (49f) sequence specific for the human Y chromosome. A strong positive signal with both probes indicated the presence of male DNA. The sex of 12 fetuses was then similarly determined by molecular characterisation of DNA from trophoblast biopsy specimens. Chorionic samples were obtained in seven cases before termination of pregnancy in the first trimester and the aborted embryos subjected to karyotyping and sex chromatin analysis. In the five other cases samples were obtained from placentas obtained during caesarean section. Results of hybridisation were compared with those from cytogenic studies and actual sex at birth. The sex of all 12 fetuses was determined correctly by hybridisation.  相似文献   

15.
P C Wensink  S Tabata  C Pachl 《Cell》1979,18(4):1231-1246
An examination of cloned Drosophila DNA has revealed large clusters of densely spaced, short (less than or equal to 1 kb), moderately repetitive elements. Different clusters have many of the same repetitive elements, but these elements are arranged differently in each cluster. It is improbable that this clustered arrangement can be detected by conventional reassociation kinetic and electron microscopic techniques, but it can be detected and features of its fine structure can be determined by a two-dimensional version of Southern's blotting technique. The genomic organization of these clustered repetitive elements was investigated by hybridizing restriction fragments of cloned DNA to polytene chromosomes, to filter-bound recombinant DNA clones and to Southern blots of total Drosophila DNA. These studies demonstrated that clusters occur in euchromatic regions of the chromosomes and that at least one of the clusters has the same repetitive element organization in cloned and in chromosomal DNA. These studies also demonstrated that copies of the elements from one cluster are scattered in at least 1000 chromosomal regions. These regions appear to have differing concentrations of repetitive DNA, but together they account for a large fraction of Drosophila's moderately repetitive DNA. Aside from indicating the genomic organization of cluster elements, this work has identified cluster elements throughout a 9 kb region neighboring one of the heat shock genes, throughout the intron of the major rDNA repeat and within the apparently transposable element, 412.  相似文献   

16.
Silene latifolia has heteromorphic sex chromosomes, the X and Y chromosomes. The Y chromosome, which is thought to carry the male determining gene, was isolated by UV laser microdissection and amplified by degenerate oligonucleotide-primed PCR. In situ chromosome suppression of the amplified Y chromosome DNA in the presence of female genomic DNA as a competitor showed that the microdissected Y chromosome DNA did not specifically hybridize to the Y chromosome, but hybridized to all chromosomes. This result suggests that the Y chromosome does not contain Y chromosome-enriched repetitive sequences. A repetitive sequence in the microdissected Y chromosome, RMY1, was isolated while screening repetitive sequences in the amplified Y chromosome. Part of the nucleotide sequence shared a similarity to that of X-43.1, which was isolated from microdissected X chromosomes. Since fluorescence in situ hybridization analysis with RMY1 demonstrated that RMY1 was localized at the ends of the chromosome, RMY1 may be a subtelomeric repetitive sequence. Regarding the sex chromosomes, RMY1 was detected at both ends of the X chromosome and at one end near the pseudoautosomal region of the Y chromosome. The different localization of RMY1 on the sex chromosomes provides a clue to the problem of how the sex chromosomes arose from autosomes.  相似文献   

17.
Hägele  Klaus 《Chromosoma》1985,91(3-4):167-171
Hybrid males of Chironomus thummi piger x Ch. th. thummi crosses were backcrossed with females of both parental stocks. Fourth-instar larvae of these backcrosses showed sex specific differences in the pairing behavior of region D3d-g in chromosome arm F of salivary gland chromosome III. — Analysis of the banding pattern of region D3d-g after RB and quinacrine staining demonstrated that in piger x thummi hybrid males a single selectively stained band occurs within this region in the heterozygous condition at map position D3e1. This band could only be found in the thummi chromosome partner, it is heterochromatic and contains AT-rich DNA. In female hybrid larvae, however, such a selectively stained band is present in neither the thummi nor the piger chromosome region D3d-g. From these results it is concluded that the selectively stained band D3e1 represents the male sex determiner of our Ch. th. thummi stock and that the male is the heterogametic sex.  相似文献   

18.
We investigated sex-specific recombination rates in Hyla arborea, a species with nascent sex chromosomes and male heterogamety. Twenty microsatellites were clustered into six linkage groups, all showing suppressed or very low recombination in males. Seven markers were sex linked, none of them showing any sign of recombination in males (r=0.00 versus 0.43 on average in females). This opposes classical models of sex chromosome evolution, which envision an initially small differential segment that progressively expands as structural changes accumulate on the Y chromosome. For autosomes, maps were more than 14 times longer in females than in males, which seems the highest ratio documented so far in vertebrates. These results support the pleiotropic model of Haldane and Huxley, according to which recombination is reduced in the heterogametic sex by general modifiers that affect recombination on the whole genome.  相似文献   

19.
Several X-linked mutations that have associated sex chromosomal nondisjunction have been identified in the mouse. We describe a new semidominant X-linked mutation called patchy fur (Paf) that produces an abnormal coat. It maps to the distal end of the murine X chromosome very near the XY pseudoautosomal region. The degree of severity in affected mice is hemizygous males greater than homozygous females greater than heterozygous females. An unusual feature of Paf is that either the mutation itself or an inseparable chromosomal abnormality causes delayed disjunction of the X and Y chromosomes at meiotic metaphase I, which in turn results in approximately 19% XO progeny and slightly less than 1% XXY progeny from Paf/Y males. The effect occurs only in male carriers and thus must extend into the proximal end of the XY pairing region.  相似文献   

20.
A number of patients with paradoxical sex chromosome complements (so-called XY females, XX and XO males) have been investigated with a series of 19 Yp and 4 Yq DNA probes to establish which region of the Y is essential for male sexual differentiation. Of the 23 XX males, 18 possessed one or more Yp probe sequences with only 5 lacking such sequences. Of 9 XY females examined, only one showed evidence of a deletion in Yp occurring either as a result of X-Y interchange or interstitial deletion. This suggests that the majority of XY females are not commonly deleted for those Y sequences which are found to be transferred to the X in XX males. The DNA of two XO males both contained different portions of the Y. From a comparison of the patterns of Yp sequences in these patients, it has been possible to elaborate a model of Yp in terms of the order of probe sequences and to suggest a location for the testis determining region in distal Yp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号