首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seasonal changes in the corpuscles of Stannius (CS) and the gonads of the catfish, Heteropneustes fossilis were studied. The annual sex cycle of the fish has been divided into 4 phases on the basis of the variations in the gonosomatic index and histocytological features displayed by the testes and ovaries. There is a rise in the percentage of aldehyde fuchsin (AF)-positive cells in the CS and an increase in the nuclear diameter, at the beginning of preparatory period (February). In the prespawning period (May--June) the AF-positive cells undergo degranulation. A slight regranulation and rise in the percentage of AF-positive cells occurs during early spawing period (July). During the postspawning phase (September--January) the corpuscles remain predominated by AF-negative cells and show histolytical changes; the nuclear indices are reduced. In view of the concomitant changes occurring in the CS and the gonads the possibility of some direct or indirect relationship between the two has been discussed, although it is difficult to ascertain whether the changes in the corpuscles are cause or consequence of the gonadal cycle.  相似文献   

2.
We report here on the macroscopic, light microscopic, and electron microscopic structure of the gas bladder (GB) of the spotted gar, Lepisosteus oculatus. The GB opens into the pharynx, dorsal to the opening of the oesophagus, through a longitudinal slit bordered by two glottal ridges. Caudal to the ridges, the GB is an elongated sac divided into a central duct and right and left lobes. The lobes are formed by a cranio‐caudal sequence of large air spaces that open into the central duct. The structure of the GB is that of a membranous sac supported by a system of septa arising from the walls of a central duct. The septa contain variable amounts of striated and smooth muscle might function to maintain the bladder shape and in providing contractile capabilities. The presence of muscle cells, nerves, and neuroepithelial cells in the wall of the GB strongly suggests that GB function is tightly regulated. The central duct and the apical surface of the thickest septa are covered by mucociliated epithelium. Most of the rest of the inner bladder surface is covered by a respiratory epithelium which contains goblet cells and a single type of pneumocyte. These two cell types produce surfactant. The respiratory barrier contains thick areas with fibrillar material and cell prolongations, and thin areas that only contain basement membrane material between the capillary wall and the respiratory epithelium. Lungs and GBs share many anatomical and histological features. There appears to be no clear criterion for structural distinction between these two types of respiratory organs. J. Morphol. 276:90–101, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
The ultrastructure of the corpuscles of Stannius (CS) ofHeteropneustes fossilis reveals a homogenous cellular composition characterized by only one cell type, with large secretory granules and abundant ribosomal endoplasmic reticulum. These cells are comparable to the type 1 cell described in the CS of other teleosts; type 2 cells, whose presence is ubiquitous in the CS of freshwater species are absent inH. fossilis. Our data on the CS ofH. fossilis demonstrate that not all freshwater species possess type 2 cells in their CS and these are not essential for life in freshwater.  相似文献   

4.
Junctional complexes between the epithelial cells in the four distinct regions of the glow-worm Malpighian tubule were investigated by electron microscopy using thin sectioning, freeze-fracturing, osmotic disruption and tracer techniques. The lateral plasma membranes of all four cell types are joined by smooth septate junctions but the extent of the complex across the cell depth varies in the four different regions. The width of the septa, the interseptal spacing and the separation between the outer leaflets of the adjacent plasma membranes are different for each cell type. Gap junctions were identified only in the junctional complex between Type IV cells and were intercalated amongst large lateral sinuses. In oblique sections of lanthanum infiltrated tissue, the electron-lucent septa at the basal side of the junction are outlined by the tracer as it penetrates. In the Junctional complexes of all four regions the septa appear as short, distinct, linear bars. In tangential sections of gap junctions between Type IV cells, the junctions appear as a hexagonal array of intermembrane particles with a centre to centre spacing of 18 nm. Horseradish peroxidase did not penetrate the junctional complexes very far but readily passed through the basal lamina into the spaces between extracellular invaginations of the basement membrane of the cells. Junctional complexes in all four areas of the tubule have similar freeze-fracture faces. In freeze-fracture replicas of fixed tissue continuous ridges of fused particles are seen on the P face and complementary furrows are found on the E face. Junctional response to osmotically adjusted Ringer solutions was similar in all four cell types. Distortion or ‘blistering’ of the intercellular space between the septa of the junction occurred when the tissue was bathed in or injected with a hypertonic Ringer solution. The structure of these junctions, visualized by the different techniques, and the role of the septate junction in a transporting epithelium, are discussed.  相似文献   

5.
The teleosts, Barilius bendelisis and Garra gotyla possess corpuscles of Stannius (CS) which are discrete, encapsulated bodies lying in close proximity to the mesonephros. The corpuscular cells are arranged in anastomosing cords which are separated from each other by connective tissue septa and numerous sinusoids. Light microscopically, 2 types of secretory cells comprise the CS in these species. Majority of the corpuscular cells are stainable with AF and PAS in contrast to the nonstainable cells which evince little affinity for the dyes. The fine cytoplasmic granules contained in the stainable cells are polarized on the vascular face in Barilius bendelisis.  相似文献   

6.
T A Qureshi 《Acta anatomica》1975,93(4):506-511
The presence of heterotopic thyroid follicles is reported in the accessory mesonephric lobes of Heteropneustes fossilis. They are found rarely and singly, scattered in the substance of these lobes, in the early stages of development; but in the adult organ they occur in groups. There is no regular distribution and proper arrangement of these follicles. They are mainly located in close proximity to blood vessels and are considered to have migrated to their heterotopic positions along them. They show some signs of functional activity in the adult animal.  相似文献   

7.
A temperature-sensitive Schizosaccharomyces pombe mutant, cdc16-116, has been isolated which undergoes uncontrolled septation during its cell division cycle. The mutant accumulates two types of cells after 3 h of growth at the restrictive temperature: (i) type I cells (85% of the population), which complete nuclear division and then form up to five septa between the divided nuclei; and (ii) type II cells (15% of the population), which form an asymmetrically situated septum in the absence of any nuclear division. cdc16-116 is a monogenic recessive mutation unlinked to any previously known cdc gene of S. pombe. It is not affected in a previously reported control by which septation is dependent upon completion of nuclear division. We propose the cdc16-116 is unable to complete septum formation and proceed to cell separation and is also defective in a control which prevents the manufacture of more than one septum in each cell cycle.  相似文献   

8.
J. H. Becking 《Plant and Soil》1984,78(1-2):105-128
Summary Root nodules ofDryas drummondii are of the coralloid type (Alnus type). The endophyte is present in the middle cortical cells of the root-nodule tissue. Transmission electron micrographs revealed an actinorhizal endophyte with septate hyphae and non-septate spherical or ovoid vesicles. Vesicles always possess at the base a septum; septa formation in the endophyte is always associated with the presence of mesosomes. Branching of the endophyte is not necessarily correlated with septum formation. Hyphal structures are more prominent in the apical part of the root nodule and vesicles are more numerous in a broad zone below this. In the middle and towards the base of the root nodule the endophytic structures appear in a stage of disintegration. Vesicles appear in a broad region near the periphery of the host cell and regularly show no strict orientation towards the host-cell wall. In the center of the host cells only hyphae occur. In the intercellular spaces between the host cells theFrankia endophyte produces spore-like structures although the outline of the sporangia is often faint.The coralloid root ofRubus ellipticus shows characteristically a basal rootlet initiated below the dichotomous branching of the nodular lobes, but extending beyond the root nodule. The endophyte is only present in the outer cortex of the root nodule in a 1–2 cell wide layer. This endophytic layer is bounded, internally as well as externally, with a 4–5 cell wide layer of tannin-filled host cells. The implications of this situation are discussed. Tannin-filled cells occur regularly inRubus species and their arrangement has been used for taxonomic purposes within the genus. TheRubus endophyte is aFrankia species with septate hyphae and distinctly septate spherical vesicles. The ultrastructure of the vesicles of theRubus endophyte is very similar to that of theAlnus endophyte.  相似文献   

9.
The normal sequence of cell separation in Saccharomyces cerevisiae begins with the formation of a primary septum, presumably consisting of chitin, on which secondary septa are later deposited. In the presence of the antibiotic polyoxin D, a potent inhibitor of chitin synthetase, pairs of abnormal cells of two different types were observed by phase-contrast microscopy: the "exploded pair," consisting of two lysed cells from which the cytoplasm had been extruded at the cell junction, and the "refringent pair," consisting of two highly refractile cells joined by a thin bridge. Thus, in both cases the septal region appears to be affected. Observations with the electron microscope showed that the primary chitin septum was not formed in either of these cell types, and as a consequence secondary septa of varying thicknesses were laid down in an abnormal pattern. With [(3)H]glucose as carbon source the incorporation of tritium into the chitin of abnormal cells was inhibited about 90%, whereas the labeling of mannan was normal and that of glucan somewhat reduced. The effective concentrations of polyoxin D (0.1 to 1 mg/ml) were much greater than those required to inhibit chitin synthesis in vitro. Dimethylsulfoxide and amphotericin B, both known to increase cell permeability, enhanced the action of the antibiotic.  相似文献   

10.
Numerous areas of granulomatous inflammation develop in the lungs of rabbits following the intravenous injection of Freund's complete adjuvant (FCA). Within a few days after FCA injection, hyperplasia of type B (type I) alveolar cells is present on the surface of the septa in which an inflammatory reaction is developing. Mitosis of type B cells is detected 12 h after FCA injection and is common over the next 120 h. In addition, there are morphologic changes that are consistent with migration of these cells. The type B cells in mitosis extend across alveolar septa as well as along the alveolar surface. The extension of type B cells through alveolar septa is not limited to cells in mitosis, but is also observed in non-mitotic type B cells. Stimulation of mitosis and hyperplasia of type B cells is discussed in relation to the focal tissue injury and inflammatory response.  相似文献   

11.
The morphogenesis of lobed plant cells has been considered to be controlled by microtubule (MT) and/or actin filament (AF) organization. In this article, a comprehensive mechanism is proposed, in which distinct roles are played by these cytoskeletal components. First, cortical MT bundles and, in the case of pavement cells, radial MT arrays combined with MT bundles determine the deposition of local cell wall thickenings, the cellulose microfibrils of which copy the orientation of underlying MTs. Cell growth is thus locally prevented and, consequently, lobes and constrictions are formed. Arch-like tangential expansion is locally imposed at the external periclinal wall of pavement cells by the radial arrangement of cellulose microfibrils at every wall thickening. Whenever further elongation of the original cell lobes occurs, AF patches assemble at the tips of growing lobes. Intercellular space formation is promoted or prevented by the opposite or alternate, respectively, arrangement of cortical MT arrays between neighboring cells. The genes that are possibly involved in the molecular regulation of the above morphogenetic procedure by MT and AF array organization are reviewed.  相似文献   

12.
A study has been made of the cells of the left colleterial gland of the cockroach, Periplaneta americana (L.), using the electron microscope, and the results compared with previous histological and histochemical studies. The colleterial gland consists of an arborescent bunch of long tubules composed mainly of the cells which secrete the structural protein of the egg case ("type 4 cells"). Other types of cells: chitinogenic cells and "type 2 and 3 cells" each with a different cytology are described. The type 4 cells, which form the structural protein, reveal a cytological pattern very similar to that described for mammalian cells in a state of active protein synthesis. There is an elaborate development of particle-studded membranes in the cytoplasm. Smaller, rounded agranular vesicles also occur. The free secretory surface of the secreting cells forms the "end-apparatus" of the light microscopists. The invaginated surface is cast into numerous long narrow processes usually radially arranged and directed into a funnel-like formation derived from the thin intima lining the lumen of the gland (Text-fig. 2). The secretion in the form of small balls may be seen in the cavity of the end-apparatus and sometimes in the narrow processes. The small chitinogenic cells, lying between the protein-forming cells and the thin intima which they secrete, have a different cytology perhaps related to the fact that they form a polysaccharide rather than a protein. There is a very poor development of the particle-studded membranes of the type found in protein-forming cells. The type 2 cells, supposed to form an oxidase, have an end-apparatus that is similar to, but more complex than, those of the type 4 cells and their cytoplasm is almost completely filled with mitochondria. There is some evidence that mitochondria play a part in forming the oxidase and pass into the tubules of the end-apparatus. Type 3 cells resemble both types 2 and 4 and are probably a transient intermediate form.  相似文献   

13.
A study has been made of the cells of the left colleterial gland of the cockroach, Periplaneta americana (L.), using the electron microscope, and the results compared with previous histological and histochemical studies. The colleterial gland consists of an arborescent bunch of long tubules composed mainly of the cells which secrete the structural protein of the egg case ("type 4 cells"). Other types of cells: chitinogenic cells and "type 2 and 3 cells" each with a different cytology are described. The type 4 cells, which form the structural protein, reveal a cytological pattern very similar to that described for mammalian cells in a state of active protein synthesis. There is an elaborate development of particle-studded membranes in the cytoplasm. Smaller, rounded agranular vesicles also occur. The free secretory surface of the secreting cells forms the "end-apparatus" of the light microscopists. The invaginated surface is cast into numerous long narrow processes usually radially arranged and directed into a funnel-like formation derived from the thin intima lining the lumen of the gland (Text-fig. 2). The secretion in the form of small balls may be seen in the cavity of the end-apparatus and sometimes in the narrow processes. The small chitinogenic cells, lying between the protein-forming cells and the thin intima which they secrete, have a different cytology perhaps related to the fact that they form a polysaccharide rather than a protein. There is a very poor development of the particle-studded membranes of the type found in protein-forming cells. The type 2 cells, supposed to form an oxidase, have an end-apparatus that is similar to, but more complex than, those of the type 4 cells and their cytoplasm is almost completely filled with mitochondria. There is some evidence that mitochondria play a part in forming the oxidase and pass into the tubules of the end-apparatus. Type 3 cells resemble both types 2 and 4 and are probably a transient intermediate form.  相似文献   

14.
Collagen has found use as a scaffold material for tissue engineering as well as a coating material for implants. The main aim of this study was to compare the ability of the collagen types I and II to bind preparations of the chondroitin sulfate types A-C (CS A, CS B, CS C). In addition, the effect of the three CS preparations on the extent of collagen incorporated into fibrils and the morphology of collagen fibrils was investigated, as was the influence of collagen fibril coatings containing CS A-C on titanium surfaces on the adhesion of primary rat osteoblasts. Fibrils of both collagen types bound a higher mass of CS C than CS B and a greater mass of CS B than CS A per milligram of fibrils formed. Fibrils of collagen type II bound a higher mass of CS B and C than collagen I fibrils. The proportion of collagen incorporated into fibrils decreased with increasing CS A and CS C concentration but not with increasing CS B concentration. All three CS preparations caused collagen I and II fibrils to become thinner. CS A and CS B but not CS C appeared to stimulate the formation of focal adhesions by osteoblasts after incubation for 2 hours. These results could be of importance when selecting collagen type or CS type as materials for implant coatings or tissue engineering scaffolds.  相似文献   

15.
The layered cortex of the cerebellum is folded along the anterior-posterior axis into lobules separated by fissures, allowing the large number of cells needed for advanced cerebellar functions to be packed into a small volume. During development, the cerebellum begins as a smooth ovoid structure with two progenitor zones, the ventricular zone and upper rhombic lip, which give rise to distinct cell types in the mature cerebellum. Initially, the cerebellar primordium is divided into five cardinal lobes, which are subsequently further subdivided by fissures. The cellular processes and genes that regulate the formation of a normal pattern of fissures are poorly understood. The engrailed genes (En1 and En2) are expressed in all cerebellar cell types and are critical for regulating formation of specific fissures. However, the cerebellar cell types that En1 and En2 act in to control growth and/or patterning of fissures has not been determined. We conditionally eliminated En2 or En1 and En2 either in both progenitor zones and their descendents or in the two complementary sets of cells derived from each progenitor zone. En2 was found to be required only transiently in the progenitor zones and their immediate descendents to regulate formation of three fissures and for general growth of the cerebellum. In contrast, En1 and En2 have overlapping functions in the cells derived from each progenitor zone in regulating formation of additional fissures and for extensive cerebellar growth. Furthermore, En1/2 function in ventricular zone-derived cells plays a more significant role in determining the timing of initiation and positioning of fissures, whereas in upper rhombic lip-derived cells the genes are more important in regulating cerebellar growth. Our studies reveal the complex manner in which the En genes control cerebellar growth and foliation in distinct cell types.  相似文献   

16.
This study examines the external and internal anatomy of the polypneustic (respiratory) lobes in 8 species of tsetse larvae (Diptera: Glossinidae). In the more primitive fusca group, the respiratory lobes are either ring-like (Glossina longipennis) or partially divided into 2 lobes (G. brevipalpis). Two distinctly separated lobes are present in the palpalis group (G. palpalis, G. tachinoides, G. fuscipes) and in the morsitans group (G. morsitans, G. pallidipes, G. austeni). Air enters the polypneustic lobes through narrow slits (stigmata) on the tips of numerous small spiracular papillae that are arranged in rows on both the outer and inner surfaces of the polypneustic lobes. The openings on the spiracular papillae connect to an air tube that is sculptured with septa and pegs. The air tubes connect to an outer air chamber that is likewise replete with a network of pegged septa. The outer air chamber is connected to a felt chamber containing a dense network of filamentous septa (spicules) that appear to function as an air filter. The felt chamber opens into a large, sculptured inner air chamber that connects directly to the regular tracheal trunk. The polypneustic lobes are unusually hard and brittle due to strong sclerotization of the cuticle and are permeated with numerous cuticular pores. There is no evidence that trichomes or other structures present on the respiratory lobes are innervated.  相似文献   

17.
The organization of septate junctions during morphogenesis of imaginal disks is described from freeze-fracture replicas and thin sections with a view to understanding junction modulation during rearrangements of cells in epithelia. The septate junctions of each epithelial cell of the disk are distributed in a number of discrete domains equal to the number of neighboring cells. Individual septa traverse domains of contact between pairs of adjacent cells, turn downwards at the lateral boundary of the domain and run parallel to the intersection with a third cell. This arrangement leaves small channels at three-cell intersections that are occupied by specialized structures termed "tricellular plugs." Cell rearrangement involves a progressive change in the width of contact domains between adjacent cells, until old contacts are broken and new ones established. It is proposed that the septate junction adjusts to the changing width of domains by the compaction or extension of existing septa. This redistribution of septa theoretically allows a transepithelial barrier to be maintained during cell rearrangements. The applicability of this model to other epithelial tissues is discussed.  相似文献   

18.
Gross structural changes and neuropil formation in the brain during development were described in Idiosepius paradoxus, a sepioid that we chose as a model cephalopod. The brain originates in 4 pairs of ectodermal placodes, which occur separately in the embryonic surface undergoing epiboly. In the final period of epiboly, neuroblasts internalize from the placodes and gather into 4 pairs of ganglionic masses. The ganglionic masses assemble into a ring-like cluster encircling the inner yolk and the foregut anlage, gradually integrated into the 4 domains of a massive brain, a subesophageal mass (SBM), a supraesophageal mass (SPM), and a pair of optic lobes. In the early brain, neuropil forms a framework composed of a longitudinal ladder lying in the SBM, and a transverse arch standing on the lateral sides of the SBM and crossing the SPM. Differentiation of brain lobes proceeds from ventral to dorsal along this framework; first the magnocellular lobes and the posterior pedal lobe appear first in the SBM, the other lobes in the SBM and the basal lobes follow in the proximal region of the SPM, and the accessory lobes develop last in the most dorsal zone of the SPM. In the hatchlings, the brain lobes show almost the same arrangement as in the adults, but the accessory lobes, particularly the vertical lobe, are much smaller than those in the adults. Comparison of the present results with those in the teuthoid and the octopod indicates that developmental sequences of the brain are highly conserved in the coleoid cephalopods.  相似文献   

19.
We compared anther development in 13 genera and 15 species of Annonaceae to document the nature and development of anther septa. In aseptate anthers, all sporogenous initials proceed to sporogenesis and meiosis. In septate anthers, a small number of sporogenous initials, in a discontinuous distribution pattern, differentiate into sporogenous cells; the remaining initials become sterile and form cellular septa that partition each anther lobe into multiple sporangial chambers. In species where the septum is 1-2 cell layers thick, the entire septum becomes tapetal (T-type septa) and breaks down before anther dehiscence. In species in which the septum is three or more cell layers thick, only the layer in direct contact with the sporogenous cells becomes tapetal, and the remaining cells become parenchymatous (P-type septa). These thicker P-type septa are sometimes visible in dehisced anthers. Both types are homologous in ontogeny and are highly associated with the production of compound pollen. We propose that the evolution of anther septation in Annonaceae was mainly driven by the requirement for highly efficient nutrient and physical support to the development of large, compound pollen units.  相似文献   

20.
What appear to be true septate junctions by all techniques currently available for the cytological identification of intercellular junctions are part of a complex junction that interconnects the Sertoli cells of the canine testis. In the seminiferous epithelium, septate junctions are located basal to belts of tight junctions. In thin sections, septate junctions appear as double, parallel, transverse connections or septa spanning an approximately 90-A intercellular space between adjacent Sertoli cells. In en face sections of lanthanum-aldehyde-perfused specimens, the septa themselves exclude lanthanum and appear as electron-lucent lines arranged in a series of double, parallel rows on a background of electron-dense lanthanum. In freeze-fracture replicas this vertebrate septate junction appears as double, parallel rows of individual or fused particles which conform to the distribution of the intercellular septa. Septate junctions can be clearly distinguished from tight junctions as tight junctions prevent the movement of lanthanum tracer toward the lumen, appear as single rows of individual or fused particles in interlacing patterns within freeze-fracture replicas, and are seen as areas of close membrane apposition in thin sections. Both the septate junction and the tight junction are associated with specializations of the Sertoli cell cytoplasm. This is the first demonstration in a vertebrate tissue of a true septate junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号