首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cutaneous malignant melanoma, the most lethal of the skin cancers, known for its intractability to current therapies, continues to increase in incidence, providing a significant public health challenge. There is a consensus that skin cancer is initiated by sunlight exposure. For non-melanoma skin cancer there is substantial evidence that chronic exposure to the ultraviolet B radiation (UVB) (280-320 nm) portion of the sunlight spectrum is responsible. Experimentally, UVB is mutagenic and chronic UVB exposure can cause non-melanoma skin cancer in laboratory animals. Non-melanoma tumors in animals and in humans show characteristic UVB signature lesions in the tumor suppressor p53 and/or in the patched (PTCH) gene. An action spectrum or wavelength dependence for squamous cell carcinoma in the mouse shows a major peak of efficacy in the UVB. For malignant melanoma, however, the situation is unclear and the critical direct target(s) of sunlight in initiating melanoma and even the wavelengths responsible are as yet unidentified. This lack of information is in major part a result of a paucity of animal models for melanoma which recapitulate the role of sunlight in initiating this disease. The epidemiology of melanoma differs significantly from non-melanoma skin cancer. Intense sporadic sunlight exposure in childhood, probably exacerbated by additional adult exposure, is associated with elevated melanoma risk. Melanoma is also a disease of gene-environment interactions with underlying genetic factors playing a significant role. These major differences indicate that extrapolation from information for non-melanoma skin cancer to melanoma is unlikely to be useful. We summarize in this review the experimental information available on the role of UV radiation in melanoma and give an overview of animal melanoma models. A new model derived by neonatal UV irradiation of hepatocyte growth factor/scatter factor (HGF/SF) transgenic mice is described which recapitulates the etiology, the histopathology and molecular pathogenesis of human disease. It is anticipated that the HGF/SF transgenic model will provide a means to access the mechanism(s) by which sunlight initiates this lethal disease and provide an appropriate vehicle for derivation of appropriate therapeutic and preventive strategies.  相似文献   

2.
Mutations induced by ultraviolet light   总被引:12,自引:0,他引:12  
The different ultraviolet (UV) wavelength components, UVA (320-400 nm), UVB (280-320 nm), and UVC (200-280 nm), have distinct mutagenic properties. A hallmark of UVC and UVB mutagenesis is the high frequency of transition mutations at dipyrimidine sequences containing cytosine. In human skin cancers, about 35% of all mutations in the p53 gene are transitions at dipyrimidines within the sequence 5'-TCG and 5'-CCG, and these are localized at several mutational hotspots. Since 5'-CG sequences are methylated along the p53 coding sequence in human cells, these mutations may be derived from sunlight-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. Cyclobutane pyrimidine dimers (CPDs) form preferentially at dipyrimidines containing 5-methylcytosine when cells are irradiated with UVB or sunlight. In order to define the contribution of 5-methylcytosine to sunlight-induced mutations, the lacI and cII transgenes in mouse fibroblasts were used as mutational targets. After 254 nm UVC irradiation, only 6-9% of the base substitutions were at dipyrimidines containing 5-methylcytosine. However, 24-32% of the solar light-induced mutations were at dipyrimidines that contain 5-methylcytosine and most of these mutations were transitions. Thus, CPDs forming preferentially at dipyrimidines with 5-methylcytosine are responsible for a considerable fraction of the mutations induced by sunlight in mammalian cells. Using mouse cell lines harboring photoproduct-specific photolyases and mutational reporter genes, we showed that CPDs (rather than 6-4 photoproducts or other lesions) are responsible for the great majority of UVB-induced mutations. An important component of UVB mutagenesis is the deamination of cytosine and 5-methylcytosine within CPDs. The mutational specificity of long-wave UVA (340-400 nm) is distinct from that of the shorter wavelength UV and is characterized mainly by G to T transversions presumably arising through mechanisms involving oxidized DNA bases. We also discuss the role of DNA damage-tolerant DNA polymerases in UV lesion bypass and mutagenesis.  相似文献   

3.
The incidence of squamous cell carcinoma of the skin is rising worldwide for decades. Chronic exposure to sunlight is the most important environmental risk factor for this type of skin cancer. This is predominantly due to the DNA damaging effect of ultraviolet-B (UVB) in sunlight. UVB induces also sunburn cells, i.e. apoptotic keratinocytes, which is a crucial protective mechanism against the carcinogenic effects of UVB irradiation. This process is regulated by a wide range of molecular determinants involved in the balance between pro- and anti-apoptotic pathways. Growing evidence suggests that the deregulation of this balance by chronic UVB irradiation, contributes to the development of skin cancer. This review gives a brief summary of major known pathways involved in the regulation of keratinocyte survival and cell death upon UVB damage and discusses the contribution of the deregulation of these cascades to photocarcinogenesis.  相似文献   

4.
The major sources of vitamin D for most humans are casual exposure of the skin to solar ultraviolet B (UVB; 290-315 nm) radiation and from dietary intake. The cutaneous synthesis of vitamin D is a function of skin pigmentation and of the solar zenith angle which depends on latitude, season, and time of day. In order to mimic the natural environment of skin to sunlight exposure, we therefore measured serum 25-hydroxyvitamin D levels in volunteers with different skin types following repeated UV irradiation. Because melanin pigment in human skin competes for and absorbs the UVB photons responsible for the photolysis of 7-dehydrocholesterol to previtamin D3, we also studied the effect of skin pigmentation on previtamin D3 production in a human skin model by exposing type II and type V skin samples to noon sunlight in June when the solar zenith angle is most acute. Vitamin D is rare in food. Among the vitamin D-rich food, oily fish are considered to be one of the best sources. Therefore, we analyzed the vitamin D content in several commonly consumed oily and non-oily fish. The data showed that farmed salmon had a mean content of vitamin D that was approximately 25% of the mean content found in wild caught salmon from Alaska, and that vitamin D2 was found in farmed salmon, but not in wild caught salmon. The results provide useful global guidelines for obtaining sufficient vitamin D3 by cutaneous synthesis and from dietary intake to prevent vitamin D deficiency and its health consequences, ensuing illness, especially, bone fractures in the elderly.  相似文献   

5.
UV-damaged DNA-binding protein (UV-DDB) is essential for global genome nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers (CPD) and accelerates repair of 6-4 photoproducts (6-4PP). The high UV-induced skin cancer susceptibility of mice compared to man has been attributed to low expression of the UV-DDB subunit DDB2 in mouse skin cells. However, DDB2 knockout mice exhibit enhanced UVB skin carcinogenesis indicating that DDB2 protects mice against UV-induced skin cancer. To resolve these apparent contradictory findings, we systematically investigated the NER capacity of mouse fibroblasts and keratinocytes. Compared to fibroblasts, keratinocytes exhibited an increased level of UV-DDB activity, contained significantly higher levels of other NER proteins (i.e. XPC and XPB) and displayed efficient repair of CPD. At low UVB dosages, the difference in skin cancer susceptibility between DDB2 KO and wild type mice was even much more pronounced than previously reported with high dose UVB exposures. Hence, our observations show that mouse keratinocytes express sufficient levels of UV-DDB for efficient repair of photolesions and efficient protection against UV-induced skin cancer at physiological relevant UV exposure.  相似文献   

6.
Immunosuppression attributed mainly to the UVB (290-320 nm) waveband is a prerequisite for skin cancer development in mice and humans. The contribution of UVA (320-400 nm) is controversial, but in mice UVA irradiation has been found to antagonise immunosuppression by UVB. In other studies of photoimmune regulation, protection mediated via oestrogen receptor-β signalling was identified as a normal endogenous defence in mice, and was shown to depend on UVA irradiation. A gender bias in photoimmune responsiveness was thus suggested, and is tested in this study by comparing the UV-induced inflammatory and immune responses in male and female hairless mice. We report that male mice, which show greater skin thickness than females, developed a less intense but slower resolving sunburn inflammatory oedema, correlated with reduced epidermal expression of pro-inflammatory IL-6 than females following solar simulated UV (SSUV, 290-400 nm) exposure. On the other hand, the contact hypersensitivity reaction (CHS) was more severely suppressed by SSUV in males, correlated with increased epidermal expression of immunosuppressive IL-10. Exposure to the UVB waveband alone, or to cis-urocanic acid, suppressed CHS equally in males and females. However, whereas UVA irradiation induced immunoprotection against either UVB or cis-urocanic acid in females, this protection was significantly reduced or abrogated in males. The results indicate that males are compromised by a relative unresponsiveness to the photoimmune protective effects of UVA, alone or as a component of SSUV. This could explain the known gender bias in skin cancer development in both mice and humans.  相似文献   

7.
The relationship between human skin pigmentation and protection from ultraviolet (UV) radiation is an important element underlying differences in skin carcinogenesis rates. The association between UV damage and the risk of skin cancer is clear, yet a strategic balance in exposure to UV needs to be met. Dark skin is protected from UV-induced DNA damage significantly more than light skin owing to the constitutively higher pigmentation, but an as yet unresolved and important question is what photoprotective benefit, if any, is afforded by facultative pigmentation (i.e. a tan induced by UV exposure). To address that and to compare the effects of various wavelengths of UV, we repetitively exposed human skin to suberythemal doses of UVA and/or UVB over 2 weeks after which a challenge dose of UVA and UVB was given. Although visual skin pigmentation (tanning) elicited by different UV exposure protocols was similar, the melanin content and UV-protective effects against DNA damage in UVB-tanned skin (but not in UVA-tanned skin) were significantly higher. UVA-induced tans seem to result from the photooxidation of existing melanin and its precursors with some redistribution of pigment granules, while UVB stimulates melanocytes to up-regulate melanin synthesis and increases pigmentation coverage, effects that are synergistically stimulated in UVA and UVB-exposed skin. Thus, UVA tanning contributes essentially no photoprotection, although all types of UV-induced tanning result in DNA and cellular damage, which can eventually lead to photocarcinogenesis.  相似文献   

8.
In view of claims that ultraviolet radiation-emitting sunbeds are safe, or safe when they emit only longer wavelengths, research findings are reviewed here on the effects of ultraviolet wavebands A and B (UVA, 315-400 nm and UVB, 290-315 nm) on mutagenesis and carcinogenesis in skin, with particular reference to melanocytes and melanoma. Both UVA and UVB radiation have been shown to induce mutations, as well as mutagenic photoproducts such as cyclobutane pyrimidine dimers, in human skin. UVB can induce melanoma in susceptible mice and in xenografted human skin engineered to express melanocyte growth factors. There is evidence for photosensitization of melanocytes by melanin, especially pheomelanin. UVA can induce melanoma in pigmented fish, and melanocytic hyperplasia in pigmented opossums, but has not generally been tested for melanoma induction in pigmented mammals or in human skin. There is no experimental basis for a claim that UVA is safe, and recreational exposure to this known mutagen should be discouraged.  相似文献   

9.
10.
Summary

The range of photon energies in solar radiation and the diverse cell and molecular targets in skin allow for participation of oxygen radicals and oxidative stress at several levels in the development of skin cancer: DNA damage and mutation, membrane damage, and intracellular signalling. The intense UVA component of sunlight (315–400 nm) is of particular interest because of deep penetration, generation of oxidative damage and having a mutational spectrum which overlaps that of the more carcinogenic UVB (280–315 nm). Many UV-induced mutagenic and signalling events are now understood at the molecular level, and significant protection from UV carcinogenesis has been obtained with antioxidants in experimental animals. There is little evidence to suggest, however, that similar results have been achieved in humans although the converse effect has been established, of elevated skin cancer risk following simultaneous exposure to sunlight and precursors of the pro-oxidant paraquat. The present difficulty in translating these findings to prevent human skin cancer may arise from deficiencies in the models used and incomplete information about the specific responses of the target cells relevant to solar UV.  相似文献   

11.
Exposure to solar UV radiation gives rise to mutations that may lead to skin cancer. UVA (320-340 nm) constitutes the large majority of solar UV radiation but is less effective than UVB (290-320 nm) at damaging DNA. Although UVA has been implicated in photocarcinogenesis, its contribution to sunlight mutagenesis has not been elucidated, and DNA damage produced by UVA remains poorly characterized. We employed HPLC-MS/MS and alkaline agarose gel electrophoresis in conjunction with the use of specific DNA repair proteins to determine the distribution of the various classes and types of DNA lesions, including bipyrimidine photoproducts, in Chinese hamster ovary cells exposed to pure UVA radiation, as well as UVB and simulated sunlight (lambda > 295 nm) for comparison. At UVA doses compatible with human exposure, oxidative DNA lesions are not the major type of damage induced by UVA. Indeed, single-strand breaks, oxidized pyrimidines, oxidized purines (essentially 8-oxo-7,8-dihydroguanine), and cyclobutane pyrimidine dimers (CPDs) are formed in a 1:1:3:10 ratio. In addition, we demonstrate that, in contrast to UVB and sunlight, UVA generates CPDs with a large predominance of TT CPDs, which strongly suggests that they are formed via a photosensitized triplet energy transfer. Moreover, UVA induces neither (6-4) photoproducts nor their Dewar isomers via direct absorption. We also show that UVA photons contained in sunlight, rather than UVB, are implicated in the photoisomerization of (6-4) photoproducts, a quickly repaired damage, into poorly repaired and highly mutagenic Dewar photoproducts. Altogether, our data shed new light on the deleterious effect of UVA.  相似文献   

12.
Using the Xiphophorus fish melanoma model, we show a strong male bias for sunlight‐induced malignant melanoma, consistent with that seen in the human population. To examine underlying factors, we exposed adult X. couchianus fish to a single, sublethal dose of UVB and measured circulating sex steroid hormones and expression of associated hormone receptor genes over a 24‐h period. We found that a single exposure had profound effects on circulating levels of steroid hormones with significant decreases for all free sex steroids at 6 and 24 h and increases in conjugated 2‐estradiol and 11‐ketotestosterone at 6 and 24 h, respectively. Whereas ARα expression increased in male and female skin, neither ARβ nor either of the ERs showed significant responses to UVB in either sex. The rapid response of male androgens and their receptors in the skin after UVB irradiation implicates hormones in the male bias of skin cancer and suggests that the photoendocrine response immediately after UV exposure may be relevant to melanomagenesis.  相似文献   

13.
The UVA (320-380 nm) component of sunlight has oxidizing properties which may be deleterious to skin cells and tissue but can also lead to the strong up-regulation of the heme-catabolizing enzyme, heme oxygenase-1. This enzyme has well-established antioxidant actions in cells as well as anti-inflammatory properties in mammals. There is also evidence from rodent models that this enzyme is responsible for the UVA-mediated protection against UVB-induced immunosuppression that occurs in skin. The relevance of these findings to acute and chronic effects of sunlight including skin carcinogenesis is currently under investigation as are the potential implications for sunlight protection in humans.  相似文献   

14.
Solar UVR ( approximately 295-400 nm) has acute clinical effects on the eyes and the skin. The only effect on the eye is inflammation of the cornea (photokeratitis), which is caused by UVB (and non-solar UVC) and resolves without long-term consequences within 48 h. The effects on the skin are more extensive and include sunburn (inflammation), tanning and immunosuppression for which UVB is mainly responsible. Tanning is modestly photoprotective against further acute UVR damage. Skin colour is also transiently changed by UVA-dependent immediate pigment darkening, the function of which is unknown. Skin type determines sensitivity to the acute and chronic effects of UVR on the skin. Some of the photochemical events that initiate acute effects are also related to skin cancer. Solar UVB is also responsible for the synthesis of vitamin D.  相似文献   

15.
The sunlight was one of the first agents recognized to be carcinogenic for humans. There is convincing evidence from epidemiologic studies that exposure to solar radiation is the major cause of cutaneous melanoma in light-pigmented populations and plays a role in the increasing incidence of this malignancy. The molecular mechanisms by which UV radiation exerts its varied effects are not completely understood, however, it is considered that UVA and UVB are equally critical players in melanoma formation. Whereas UVA can indirectly damage DNA through the formation of reactive oxygen radicals, UVB can directly damage DNA causing the apoptosis of keratinocytes by forming the sunburn cells. Besides action through mutations in critical regulatory genes, UV radiation may promote cancer through indirect mechanisms, e.g. immunosuppression and dysregulation of growth factors. The carcinogenic process probably involves multiple sequential steps, some, but not all of which involve alterations in DNA structure.  相似文献   

16.
Exposure to ultraviolet (UV) radiation from sunlight accounts for 90% of the symptoms of premature skin aging and skin cancer. The tumor suppressor serine-threonine kinase LKB1 is mutated in Peutz-Jeghers syndrome and in a spectrum of epithelial cancers whose etiology suggests a cooperation with environmental insults. Here we analyzed the role of LKB1 in a UV-dependent mouse skin cancer model and show that LKB1 haploinsufficiency is enough to impede UVB-induced DNA damage repair, contributing to tumor development driven by aberrant growth factor signaling. We demonstrate that LKB1 and its downstream kinase NUAK1 bind to CDKN1A. In response to UVB irradiation, LKB1 together with NUAK1 phosphorylates CDKN1A regulating the DNA damage response. Upon UVB treatment, LKB1 or NUAK1 deficiency results in CDKN1A accumulation, impaired DNA repair and resistance to apoptosis. Importantly, analysis of human tumor samples suggests that LKB1 mutational status could be a prognostic risk factor for UV-induced skin cancer. Altogether, our results identify LKB1 as a DNA damage sensor protein regulating skin UV-induced DNA damage response.  相似文献   

17.
UV irradiation has been shown to activate the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) in cell culture; however, only limited studies have been described in vivo. UV light has been categorized as UV-A (400 to 315 nm), -B (315 to 280 nm), or -C (less than 280 nm); the longer wavelengths are less harmful but more penetrative. Highly penetrative UV-A radiation constitutes the vast majority of UV sunlight reaching the earth's surface but is normally harmless. UV-B irradiation is more harmful but less prevalent than UV-A. In this report, the HIV-1 LTR-luciferase gene in the skin of transgenic mice was markedly activated when exposed to UV-B irradiation. The LTR in the skin of transgenic mice pretreated topically with a photosensitizing agent (psoralen) was also activated to similar levels when exposed to UV-A light. A 2-h exposure to sunlight activated the LTR in skin treated with psoralen, whereas the LTR in skin not treated with psoralen was activated after 7 h of sunlight exposure. The HIV-1 LTR-beta-galactosidase reporter gene was preferentially activated by UV-B irradiation in a small population of epidermal cells. The transgenic mouse models carrying HIV-1 LTR-luciferase and LTR-beta-galactosidase reporter genes have been used to demonstrate the in vivo UV-induced activation of the LTR and might be used to evaluate other environmental factors or pharmacologic substances that might potentially activate the HIV-1 LTR in vivo.  相似文献   

18.
Halliday GM 《Mutation research》2005,571(1-2):107-120
Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans.  相似文献   

19.
For many years, zinc salts have been used both topically and orally to treat minor burns and abrasions as well as to enhance wound repair in man and animals. In this study we describe the protective effects of zinc against UV-induced genotoxicity in vitro and against sunburn cell formation in mouse skin in vivo. Cultured skin cells from neonatal mice showed a dramatic increase in the number of micronuclei as a result of UVA and UVB irradiation. Inclusion of zinc at 5 μg/mL in the medium significantly reduced the frequency of micronuclei and of micronucleated cells. In hairless mice, topical application of zinc chloride for 5 consecutive days or a single application 2 h prior to UV exposure reduced the number of sunburn cells in the epidermis as did application of zinc 1 h after exposure. Application 2 h after irradiation also tended to have a protective effect, although there was a large variation between animals. It is proposed that an influx of zinc can protect epidermal cells against some of the more delayed effects of UV-induced damage.  相似文献   

20.
DNA and RNA undergo photodegradation in UVC (200-290 nm) due to direct absorption by the purine and pyrimidine bases. Limited effects are observed under UVB (290-320 nm) or UVA (320-400 nm). We have observed that an endogenous photosensitizer, riboflavin (RF), upon exposure to UVB or UVA can extensively damage the DNA and RNA bases. Guanine, uracil, thymine, adenine and cytosine were degraded by 100%, 82%, 60.4%, 46.3% and 10.3% under UVA (12 J) and by 100%, 54.1%, 38.9%, 42.2% and <1.0% under UVB (6 J), respectively. Guanosine and deoxyguanosine were degraded by 98 ± 1.0% and 80 ± 1.0% under UVA (4 J) and UVB (12 J), respectively. With an exception of GMP (53-82%), dGMP (51-88%) and to some extent TMP (3-4%) the remaining nucleosides and nucleotides were resistant to RF-induced photodecomposition. The photodegradation of G derivatives by RF was 2-fold higher than a well known photodynamic agent rose bengal. A comparison of the intensities of UVA and UVB sources used in this study with natural sunlight suggests that exposure with the latter along with an endogenous photosensitizer can have similar effects on DNA and RNA depending upon the duration of exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号