首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Curculin isolated from Curculigo latifolia, a plant grown in Malaysia, has an intriguing property of modifying sour taste into sweet taste. In addition to this taste-modifying activity, curculin itself elicits a sweet taste. Although these activities have been attributed to the heterodimeric isoform and not homodimers of curculin, the underlying mechanisms for the dual action of this protein have been largely unknown. To identify critical sites for these activities, we performed a mutational and structural study of recombinant curculin. Based on the comparison of crystal structures of curculin homo- and heterodimers, a series of mutants was designed and subjected to tasting assays. Mapping of amino acid residues on the three-dimensional structure according to their mutational effects revealed that the curculin heterodimer exhibits sweet-tasting and taste-modifying activities through its partially overlapping but distinct molecular surfaces. These findings suggest that the two activities of the curculin heterodimer are expressed through its two different modes of interactions with the T1R2-T1R3 heterodimeric sweet taste receptor.  相似文献   

2.
Curculin elicited a sweet taste. After the sweetness of curculindiminished, application of deionized water or an acid to thetongue induced a sweet taste. The maximum sweetness of curculinitself was equivalent to thesweetness of 0.35 M sucrose. Themaximum sweetness induced by 0.02 M citric acid or deionizedwater after curculin dissolved in a buffer of pH 6.0 was heldin mouth for 3 min was also equivalent to that of 0.35 M sucrose.The sweetness induced by deionized water was completely suppressedby the presence of 1 mM CaCl2 or MgCl2, while that induced byan acid was not suppressed by the presence of divalent cations.Based on these results, the mechanism of the taste-modifyingactivity was discussed. Stability of curculin was examined undervarious conditions. The taste-modifying activity of curculinwas unchanged when curculin was incubated at 50°C for 1h between pH 3 and 11.  相似文献   

3.
Neoculin occurring in the tropical fruit of Curculigo latifolia is currently the only protein that possesses both a sweet taste and a taste-modifying activity of converting sourness into sweetness. Structurally, this protein is a heterodimer consisting of a neoculin acidic subunit (NAS) and a neoculin basic subunit (NBS). Recently, we found that a neoculin variant in which all five histidine residues are replaced with alanine elicits intense sweetness at both neutral and acidic pH but has no taste-modifying activity. To identify the critical histidine residue(s) responsible for this activity, we produced a series of His-to-Ala neoculin variants and evaluated their sweetness levels using cell-based calcium imaging and a human sensory test. Our results suggest that NBS His11 functions as a primary pH sensor for neoculin to elicit taste modification. Neoculin variants with substitutions other than His-to-Ala were further analyzed to clarify the role of the NBS position 11 in the taste-modifying activity. We found that the aromatic character of the amino acid side chain is necessary to elicit the pH-dependent sweetness. Interestingly, since the His-to-Tyr variant is a novel taste-modifying protein with alternative pH sensitivity, the position 11 in NBS can be critical to modulate the pH-dependent activity of neoculin. These findings are important for understanding the pH-sensitive functional changes in proteinaceous ligands in general and the interaction of taste receptor-taste substance in particular.  相似文献   

4.
A three-dimensional model of curculin, a sweet-tasting and taste-modifying protein from the fruits of Curculigo latifolia, was built from the X-ray coordinates of GNA, a mannose-binding lectin from snowdrop (Galanthus nivalis). The three mannose-binding sites present in GNA were found in curculin but are devoid of mannose-binding activity as shown by docking experiments performed with mannose. Some regions well exposed on the surface of the three-dimensional model of curculin could act as epitopes responsible for the sweet-tasting properties of this protein.  相似文献   

5.
A unique taste-modifying activity that converts the sense of sourness to the sense of sweetness occurs in the fruit of the plant Curculigo latifolia, intrinsic to West Malaysia. The active component, known as curculin, is a protein consisting of two identical subunits. We have found a new taste-modifying protein, named neoculin, of the same origin. Both chemical analysis and cDNA cloning characterized neoculin as a heterodimeric protein consisting of an acidic, glycosylated subunit of 113 amino acid residues and a basic subunit that is the monomeric curculin itself.  相似文献   

6.
We have developed an enzyme immunoassay method for curculin, a new type of taste-modifying protein. This method can accurately quantify 0.05–20 ng of curculin, a sensitivity about 3000-times that of the psychometric method. The content of curculin in the fruit of Curculigo latifolia increased gradually until 3 weeks after artificial pollination and dramatically at 4 weeks, to finally reach 1.3 mg per fruit. Immunoblot analysis indicated that antiserum to curculin was faintly reactive with miraculin, but not with thaumatin or monellin.  相似文献   

7.
Miraculin is a plant protein that displays the peculiar property of modifying taste by swiching sour into a sweet taste. Its monomer is flavourless at all pH as well as at high concentration; the dimer form elicits its taste-modifying activity at acidic pH; a tetrameric form is also reported as active. Two histidine residues, located in exposed regions, are the main responsible of miraculin activity, as demonstrated by mutagenesis studies. Since structural data of miraculin are not available, we have predicted its three-dimensional structure and simulated both its dimer and tetramer forms by comparative modelling and molecular docking techniques. Finally, molecular dynamics simulations at different pH conditions have indicated that at acidic pH the dimer assumes a widely open conformation, in agreement with the hypotheses coming from other studies.  相似文献   

8.
The taste-modifying protein, miraculin, has the unusual property of modifying a sour taste into a sweet taste. Previous attempts to isolate miraculin from deeply colored alkaline extracts of the miracle fruit were unsuccessful. We found that miraculin is extracted with 0.5 M NaCl solution. The extracted solution is colorless and shows the strong sweet-inducing activity. Miraculin was purified from the extracted solution by ammonium sulfate fractionation, CM-Sepharose ion-exchange chromatography, and concanavalin A-Sepharose affinity chromatography. The purified miraculin thus obtained gave a single sharp peak in reverse phase high performance liquid chromatography, indicating that it is highly pure. The sample also gave a single band having molecular weight 28,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This value was much lower than the values reported previously (40,000-48,000). The amino acid composition of the purified miraculin was determined. Sequence analysis of the purified miraculin indicated that it is composed of a pure single polypeptide and identified 20 amino-terminal amino acids. The purified miraculin contained as much as 13.9% of sugars, which consisted of glucosamine, mannose, galactose, xylose, and fucose in a molar ratio of 3.03:3.00:0.69:0.96:2.12.  相似文献   

9.
The taste-modifying protein, miraculin, has the unusual property of modifying sour taste into sweet taste. The complete amino acid sequence of miraculin purified from miracle fruits by a newly developed method (Theerasilp, S., and Kurihara, Y. (1988) J. Biol. Chem. 263, 11536-11539) was determined by an automatic Edman degradation method. Miraculin was a single polypeptide with 191 amino acid residues. The calculated molecular weight based on the amino acid sequence and the carbohydrate content (13.9%) was 24,600. Asn-42 and Asn-186 were linked N-glycosidically to carbohydrate chains. High homology was found between the amino acid sequences of miraculin and soybean trypsin inhibitor.  相似文献   

10.
Curculin, a sweet protein found in Curculigo latifolia fruit has great potential for the pharmaceutical industry. This protein interestingly has been found to have both sweet taste and taste-modifying capacities comparable with other natural sweeteners. According to our knowledge this is the first reported case on the isolation of microsatellite loci in this genus. Hence, the current development of microsatellite markers for C. latifolia will facilitate future population genetic studies and breeding programs for this valuable plant. In this study 11 microsatellite markers were developed using 3' and 5' ISSR markers. The primers were tested on 27 accessions from all states of Peninsular Malaysia. The number of alleles per locus ranged from three to seven, with allele size ranging from 141 to 306?bp. The observed and expected heterozygosity ranged between 0.00-0.65 and 0.38-0.79, respectively. The polymorphic information content ranged from 0.35 to 0.74 and the Shannon's information index ranged from 0.82 to 1.57. These developed polymorphic microsatellites were used for constructing a dendrogram by unweighted pair group method with arithmetic mean cluster analysis using the Dice's similarity coefficient. Accessions association according to their geographical origin was observed. Based on characteristics of isolated microsatellites for C. latifolia accessions all genotype can be distinguished using these 11 microsatellite markers. These polymorphic markers could also be applied to studies on uniformity determination and somaclonal variation of tissue culture plantlets, varieties identification, genetic diversity, analysis of phylogenetic relationship, genetic linkage maps and quantitative trait loci in C. latifolia.  相似文献   

11.
In a previous study we isolated homologues of new oleanane-type triterpene glycosides from leaves of Staurogyne merguensis Kuntze and named them strogins. Strogins themselves have a sweet taste (sweet activity), which diminishes in a few minutes. Subsequent application of cold water to the mouth then elicits a sweet taste (sweetness-inducing activity). In the present study we systematically examined the properties of the sweet and sweetness-inducing activities of strogins. Strogins 1, 2 and 4 had both the sweet and sweetness-inducing activities, while strogins 3 and 5 had no activities. The sweetness- inducing activity in response to cold water lasted for 1 h for strogin 2 and 2 h for strogins 1 and 4. The sweetness-inducing activity was immediately diminished by application of gamma-cyclodextrin to the mouth after strogins were held in the mouth. It seems that the strogins were adsorbed on the gustatory receptor membranes and eliminated by inclusion activity of gamma-cyclodextrin. The structure of strogin resembles that of gymnemic acid, which has antisweet activity. There was competition between strogin 1 and gymnemic acid; treatment of the tongue with strogin 1 before application of Gymnema extract to the mouth reduced the antisweet activity. While the sweetness-inducing activity of curculin in response to water was suppressed by the presence of divalent cations such as Ca2+ or Mg2+, that of strogin was not suppressed by the divalent cations. The changes in the inactive complex between strogin and the sweet receptor site in the adaptation state into the active complex induced by cold stimulation were discussed.   相似文献   

12.

Background

Miraculin (MCL) is a taste-modifying protein that converts sourness into sweetness. The molecular mechanism underlying the taste-modifying action of MCL is unknown.

Methods

Here, a yeast expression system for MCL was constructed to accelerate analysis of its structure–function relationships. The Saccharomyces cerevisiae expression system has advantages as a high-throughput analysis system, but compared to other hosts it is characterized by a relatively low level of recombinant protein expression. To alleviate this weakness, in this study we optimized the codon usage and signal-sequence as the first step. Recombinant MCL (rMCL) was expressed and purified, and the sensory taste was analyzed.

Results

As a result, a 2 mg/l yield of rMCL was successfully obtained. Although sensory taste evaluation showed that rMCL was flat in taste under all the pH conditions employed, taste-modifying activity similar to that of native MCL was recovered after deglycosylation. Mutagenetic analysis revealed that the N-glycan attached to Asn42 was bulky in rMCL.

Conclusions

The high-mannose-type N-glycan attached in yeast blocks the taste-modifying activity of rMCL.

General significance

The bulky N-glycan attached to Asn42 may cause steric hindrance in the interaction between active residues and the sweet taste receptor hT1R2/hT1R3.  相似文献   

13.
Miraculin (MCL) is a homodimeric protein isolated from the fruits of Richadella dulcifica, a shrub native to West Africa. Although it is flat in taste at neutral pH, MCL has taste-modifying activity in which sour stimuli produce a sweet perception. Once MCL enters the mouth, strong sweetness can be detected for more than 1 h each time we taste a sour solution. While the human sweet taste receptor (hT1R2–hT1R3) has been identified, the molecular mechanisms underlying the taste-modifying activity of MCL remain unclear. Recently, experimental evidence has been published demonstrating the successful quantitative evaluation of the acid-induced sweetness of MCL using a cell-based assay system. The results strongly suggested that MCL binds hT1R2–hT1R3 as an antagonist at neutral pH and functionally changes into an agonist at acidic pH. Since sweet-tasting proteins may be used as low-calorie sweeteners because they contain almost no calories, it is expected that MCL will be used in the near future as a new low-calorie sweetener or to modify the taste of sour fruits.  相似文献   

14.
Thaumatin I is an intensely sweet-tasting protein. It was photo-crosslinked with taste papillae of crab-eating monkey by using a conjugated photo-affinity reagent [3H]azidobenzoylthaumatin I. Serial sections of SDS-polyacrylamide gel electrophoresis of the 0.1 M sodium phosphate buffer-soluble fraction from taste papillae had a large peak of radioactivity at the Mr region of approx. 70,000; fractions from non-taste papillae did not. Excess unlabeled thaumatin I reduced the photo-crosslinking at the 70 kDa region; acetylated thaumatin I (which is not sweet) did not. The results show that taste papillae of the monkey contain a protein of Mr approx. 50,000, which binds to thaumatin I (Mr 22,209) but not to completely acetylated thaumatin I. The possibility that the thaumatin-binding protein is a sweet receptor protein is discussed.  相似文献   

15.
The utility of plants as biofactories has progressed in recent years. Some recombinant plant-derived pharmaceutical products have already reached the marketplace. However, with the exception of drugs and vaccines, a strong effort has not yet been made to bring recombinant products to market, as cost-effectiveness is critically important for commercialization. Sweet-tasting proteins and taste-modifying proteins have a great deal of potential in industry as substitutes for sugars and as artificial sweeteners. The taste-modifying protein, miraculin, functions to change the perception of a sour taste to a sweet one. This taste-modifying function can potentially be used not only as a low-calorie sweetener but also as a new seasoning that could be the basis of a new dietary lifestyle. However, miraculin is far from inexpensive, and its potential as a marketable product has not yet been fully developed. For the last several years, biotechnological production of this taste-modifying protein has progressed extensively. In this review, the characteristics of miraculin and recent advances in its production using transgenic plants are summarized, focusing on such topics as the suitability of plant species as expression hosts, the cultivation method for transgenic plants, the method of purifying miraculin and future advances required to achieve industrial use.  相似文献   

16.
Miraculin is a taste-modifying protein isolated from the red berries of Richadella dulcifica , a shrub native to West Africa. Miraculin by itself is not sweet, but it is able to turn a sour taste into a sweet taste. This unique property has led to increasing interest in this protein. In this article, we report the high-yield production of miraculin in transgenic tomato plants. High and genetically stable expression of miraculin was confirmed by Western blot analysis and enzyme-linked immunosorbent assay. Recombinant miraculin accumulated to high levels in leaves and fruits, up to 102.5 and 90.7 µg/g fresh weight, respectively. Purified recombinant miraculin expressed in transgenic tomato plants showed strong sweetness-inducing activity, similar to that of native miraculin. These results demonstrate that recombinant miraculin was correctly processed in transgenic tomato plants, and that this production system could be a good alternative to production from the native plant.  相似文献   

17.
This study examines taste reception of neoculin, a Curculigo latifolia sweet protein with taste-modifying activity which converts sourness to sweetness. Neoculin tastes sweet to humans, but not to mice, and is received by the human sweet taste receptor hT1R2-hT1R3. In the present study with calcium imaging analysis of HEK cells expressing human and mouse T1Rs, we demonstrated that hT1R3 is required for the reception of neoculin. Further experiments using human/mouse chimeric T1R3s revealed that the extracellular amino terminal domain (ATD) of hT1R3 is essential for the reception of neoculin. Although T1R2-T1R3 is known to have multiple potential ligand-binding sites to receive a wide variety of sweeteners, the present study is apparently the first to identify the ATD of hT1R3 as a new sweetener-binding region.  相似文献   

18.
甜味蛋白和矫味蛋白的研究进展   总被引:5,自引:1,他引:4  
迄今为止,已发现了六种甜味蛋白和一种矫味蛋白,它们具有无毒、安全、热量低等优点,因此有可能取代蔗糖成为一类新型甜味剂。这些蛋白结构虽然都能诱发甜味,但他们结构却不一样。许多生物技术被应用到这类蛋白的研究中,但廉价而安全地把这类蛋白推向市场还需进一步研究。  相似文献   

19.
20.
Sun HJ  Cui ML  Ma B  Ezura H 《FEBS letters》2006,580(2):620-626
Taste-modifying proteins are a natural alternative to artificial sweeteners and flavor enhancers and have been used in some cultures for centuries. The taste-modifying protein, miraculin, has the unusual property of being able to modify a sour taste into a sweet taste. Here, we report the use of a plant expression system for the production of miraculin. A synthetic gene encoding miraculin was placed under the control of constitutive promoters and transferred to lettuce. Expression of this gene in transgenic lettuce resulted in the accumulation of significant amounts of miraculin protein in the leaves. The miraculin expressed in transgenic lettuce possessed sweetness-inducing activity. These results demonstrate that the production of miraculin in edible plants can be a good alternative strategy to enhance the availability of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号