首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have amplified and cloned DNA sequences derived from a gene encoding a SNF1 (sucrose-non-fermenting 1)-related protein kinase which differs from that previously reported from barley. Northern blot and polymerase chain reaction (PCR) analysis of RNA populations, using specific probes and oligonucleotide primers, indicated that the two SNF1-related genes are differentially regulated. One is expressed in all tissues, whereas the other is expressed at high levels in the seed endosperm and aleurone, but at levels undetectable by northern blot analysis in other tissues. Comparisons with other plant SNF1-related protein kinase genes suggest that the form which is expressed at greatly enhanced levels in the seed is less similar to the other plant homologues which have been reported and may be unique to cereals.  相似文献   

2.
3.
4.
A calcium-activated and phospholipid-dependent protein kinase (protein kinase C) catalyzes the phosphorylation of both insoluble microsomal (Mr approximately 100,000) and purified soluble (Mr = 53,000) 3-hydroxy-3-methylglutaryl coenzyme A reductase. The phosphorylation and concomitant inactivation of enzymic activity of HMG-CoA reductase was absolutely dependent on Ca2+, phosphatidylserine, and diolein. Dephosphorylation of phosphorylated HMG-CoA reductase was associated with the loss of protein bound radioactivity and reactivation of enzymic activity. Maximal phosphorylation of purified HMG-CoA reductase was associated with the incorporation of 1.05 +/- 0.016 mol of phosphate/mol of native form of HMG-CoA reductase (Mr approximately 100,000). The apparent Km for purified HMG-CoA reductase and histone H1 was 0.08 mg/ml, and 0.12 mg/ml, respectively. The tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate stimulated the protein kinase C-catalyzed phosphorylation of HMG-CoA reductase. Increased phosphorylation of HMG-CoA reductase by phorbol 12-myristate 13-acetate suggests a possible in vivo protein kinase C-mediated mechanism for the short-term regulation of HMG-CoA reductase activity. The identification of the protein kinase C system in addition to the reductase kinase-reductase kinase kinase bicyclic cascade systems for the modulation of the enzymic activity of HMG-CoA reductase may provide new insights into the molecular mechanisms involved in the regulation of cholesterol biosynthesis.  相似文献   

5.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase exists in interconvertible active and inactive forms in cultured fibroblasts from normal and familial hypercholesterolemic subjects. The inactive form can be activated by endogenous or added phosphoprotein phosphatase. Active or partially active HMG-CoA reductase in cell extracts was inactivated by a ATP-Mg-dependent reductase kinase. Incubation of phosphorylated (inactive) HMG-CoA reductase with purified phosphoprotein phosphatase was associated with dephosphorylation (reactivation) and complete restoration of HMG-CoA reductase activity. Low density lipoprotein, 25-hydroxycholesterol, 7-ketocholesterol, and mevalonolactone suppressed HMG-CoA reductase activity by a short-term mechanism involving reversible phosphorylation. 25-Hydroxycholesterol, which enters cells without the requirement of low density lipoprotein-receptor binding, inhibited the HMG-CoA reductase activity in familial hypercholesterolemic cells by reversible phosphorylation. Measurement of the short-term effects of inhibitors on the rate of cholesterol synthesis from radiolabeled acetate revealed that HMG-CoA reductase phosphorylation was responsible for rapid suppression of sterol synthesis. Reductase kinase activity of cultured fibroblasts was also affected by reversible phosphorylation. The active (phosphorylated) reductase kinase can be inactivated by dephosphorylation with phosphatase. Inactive reductase kinase can be reactivated by phosphorylation with ATP-Mg and a second protein kinase from rat liver, designated reductase kinase kinase. Reductase kinase kinase activity has been shown to be present in the extracts of cultured fibroblasts. The combined results represent the initial demonstration of a short-term regulation of HMG-CoA reductase activity and cholesterol synthesis in normal and receptor-negative cultured fibroblasts involving reversible phosphorylation of both HMG-CoA reductase and reductase kinase.  相似文献   

6.
A Ca2+/calmodulin-dependent kinase has been purified which catalyzed the phosphorylation and concomitant inactivation of both the microsomal native (100,000 Da) and protease-cleaved purified 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) (53,000 Da) fragments. This low molecular weight brain cytosolic Ca2+/calmodulin-dependent kinase phosphorylates histone H1, synapsin I, and purified HMG-CoA reductase as major substrates. The kinase, purified by sequential chromatography on DEAE-cellulose, calmodulin affinity resin, and high performance liquid chromatography (TSKG 3000 SW) is an electrophoretically homogeneous protein of approximately 110,000 Da. The molecular weight of the holoenzyme, substrate specificity, subunit protein composition, subunit autophosphorylation, subunit isoelectric points, and subunit phosphopeptide analysis suggest that this kinase of Mr 110,000 may be different from other previously reported Ca2+/calmodulin-dependent kinases. Maximal phosphorylation by the low molecular form of Ca2+/calmodulin-dependent kinase of purified HMG-CoA reductase revealed a stoichiometry of approximately 0.5 mol of phosphate/mol of 53,000-Da enzyme. Dephosphorylation of phosphorylated and inactivated native and purified HMG-CoA reductase revealed a time-dependent loss of 32P-bound radioactivity and reactivation of enzyme activity. Based on the results reported here, we propose that HMG-CoA reductase activity may be modulated by yet another kinase system involving covalent phosphorylation. The elucidation of a Ca2+/calmodulin-dependent HMG-CoA reductase kinase-mediated modulation of HMG-CoA reductase activity involving reversible phosphorylation may provide new insights into the molecular mechanisms involved in the regulation of cholesterol biosynthesis.  相似文献   

7.
1. We have purified the AMP-activated protein kinase 4800-fold from rat liver. The acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA(HMG-CoA) reductase kinase activities copurify through all six purification steps and are inactivated with similar kinetics by treatment with the reactive ATP analogue fluorosulphonylbenzoyladenosine. 2. The final preparation contains several polypeptides detectable by SDS/polyacrylamide gel electrophoresis, but only one of these, with an apparent molecular mass of 63 kDa, is labelled using [14C]fluorosulphonylbenzoyladenosine. This is also the only polypeptide in the preparation that becomes significantly labelled during incubation with [gamma 32P]ATP. This autophosphorylation reaction did not affect the AMP-stimulated kinase activity. 3. In the absence of AMP the purified kinase has apparent Km values for ATP and acetyl-CoA carboxylase of 86 microM and 1.9 microM respectively. AMP increases the Vmax 3-5-fold without a significant change in the Km for either protein or ATP substrates. 4. The response to AMP depends on the ATP concentration in the assay, but at a near-physiological ATP concentration the half-maximal effect of AMP occurs at 14 microM. Studies with a range of nucleoside monophosphates and diphosphates, and AMP analogues showed that the allosteric activation by AMP was very specific. ADP gave a small stimulation at low concentrations but was inhibitory at high concentrations. 5. These results show that the AMP-activated protein kinase is the major HMG-CoA reductase kinase detectable in rat liver under our assay conditions and that it is therefore likely to be identical to previously described HMG-CoA reductase kinase(s) which are activated by adenine nucleotides and phosphorylation. The AMP-binding and catalytic domains of the kinase are located on a 63-kDa polypeptide which is subject to autophosphorylation.  相似文献   

8.
A 154 bp polymerase chain reaction product, SBKIN154, showing 76–83% sequence identity with sucrose nonfermenting-1 (SNF1)-related protein kinase nucleotide sequences from other plant species was amplified from sugar beet storage root RNA. Southern blot analysis using SBKIN154 as a hybridisation probe suggested that sugar beet contains either a single-copy SNF1-related gene or a small gene family of highly conserved genes. An antibody raised to a heterologously-expressed fusion of the rye SNF1-related protein kinase, RKIN1, and maltose binding protein, recognised a protein of the expected size (Mr approx. 60,000) on western blots of storage root, stalk, leaf and root extracts. Measurements of SNF1-related activity were made using a specific peptide (SAMS) phosphorylation assay. Activity was highest (0.38 nmol min-1 mg-1 protein) in developing storage roots and lowest (0.035 nmol min-1 mg-1) in fibrous roots.  相似文献   

9.
Protein phosphorylation is well established as a regulatory mechanism in higher plants, but only a handful of plant enzymes are known to be regulated in this manner, and relatively few plant protein kinases have been characterized. AMP-activated protein kinase regulates key enzymes of mammalian fatty acid, sterol and isoprenoid metabolism, including 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. We now show that there is an activity in higher plants which, by functional criteria, is a homologue of the AMP-activated protein kinase, although it is not regulated by AMP. The plant kinase inactivates mammalian HMG-CoA reductase and acetyl-CoA carboxylase, and peptide mapping suggests that it phosphorylates the same sites on these proteins as the mammalian kinase. However, with the target enzymes purified from plant sources, it inactivates HMG-CoA reductase but not acetyl-CoA carboxylase. The kinase is located in the soluble, and not the chloroplast, fraction of leaf cells, consistent with the idea that it regulates HMG-CoA reductase, and hence isoprenoid biosynthesis, in vivo. The plant kinase also appears to be part of a protein kinase cascade which has been highly conserved during evolution, since the kinase is inactivated and reactivated by mammalian protein phosphatases (2A or 2C) and mammalian kinase kinase, respectively. This contrasts with the situation for many other mammalian protein kinases involved in signal transduction, which appear to have no close homologue in higher plants. To our knowledge, this represents the first direct evidence for a protein kinase cascade in higher plants.  相似文献   

10.
We resolved from spinach (Spinacia oleracea) leaf extracts four Ca2+-independent protein kinase activities that phosphorylate the AMARAASAAALARRR (AMARA) and HMRSAMSGLHLVKRR (SAMS) peptides, originally designed as specific substrates for mammalian AMP-activated protein kinase and its yeast homolog, SNF1. The two major activities, HRK-A and HRK-C (3-hydroxy-3-methylglutaryl-coenzyme A reductase kinase A and C) were extensively purified and shown to be members of the plant SnRK1 (SNF1-related protein kinase 1) family using the following criteria: (a) They contain 58-kD polypeptides that cross-react with an antibody against a peptide sequence characteristic of the SnRK1 family; (b) they have similar native molecular masses and specificity for peptide substrates to mammalian AMP-activated protein kinase and the cauliflower homolog; (c) they are inactivated by homogeneous protein phosphatases and can be reactivated using the mammalian upstream kinase; and (d) they phosphorylate 3-hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis at the inactivating site, serine (Ser)-577. We propose that HRK-A and HRK-C represent either distinct SnRK1 isoforms or the same catalytic subunit complexed with different regulatory subunits. Both kinases also rapidly phosphorylate nitrate reductase purified from spinach, which is associated with inactivation of the enzyme that is observed only in the presence of 14-3-3 protein, a characteristic of phosphorylation at Ser-543. Both kinases also inactivate spinach sucrose phosphate synthase via phosphorylation at Ser-158. The SNF1-related kinases therefore potentially regulate several major biosynthetic pathways in plants: isoprenoid synthesis, sucrose synthesis, and nitrogen assimilation for the synthesis of amino acids and nucleotides.  相似文献   

11.
Rat liver prolyl-tRNA synthetase was purified as a dimer of M(r) 60,000 subunits not associated with other aminoacyl-tRNA synthetases and as a form associated with glutamyl-tRNA synthetase. Proteolysis of the dimeric enzyme generated a less active form with M(r) 52,000 subunits and an inactive form with M(r) 40,000 subunits. A second species was isolated with polypeptides of M(r) 60,000 and 150,000. This form dissociated during gel filtration chromatography being partially resolved into the M(r) 150,000 and 60,000 components; glutamyl-tRNA synthetase was associated with the larger polypeptide and prolyl-tRNA synthetase with the smaller component. Antibodies against the M(r) 60,000 polypeptide reacted with the M(r) 60,000 and 150,000 polypeptides. Gel filtration of extracts revealed multiple forms of prolyl- and glutamyl-tRNA synthetase. Antibody against the M(r) 60,000 component detected the M(r) 60,000 and 150,000 polypeptides throughout the chromatogram; these forms could be partially separated by polyethylene glycol fractionation. The M(r) 150,000 and 60,000 polypeptides were detected by Western blot analysis of crude extracts prepared under several conditions. Antibody to prolyl-tRNA synthetase reacted with a M(r) 150,000 polypeptide of the aminoacyl-tRNA synthetase core complex identified previously as glutamyl-tRNA synthetase.  相似文献   

12.
Extensively purified rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase was used to examine the role of ADP in inactivation of HMG-CoA reductase (EC 1.1.1.34). Solubilized HMG-CoA reductase was a suitable substrate for HMG-CoA reductase kinase. At sufficiently high concentrations of solubilized HMG-CoA reductase, reductase kinase activity approached that measured using microsomal HMG-CoA reductase as substrate. Inactivation of solubilized HMG-CoA reductase by HMG-CoA reductase kinase required both MgATP and ADP. Other nucleoside diphosphates, including alpha, beta-methylene-ADP, could replace ADP. HMG-CoA reductase kinase catalyzed phosphorylation of bovine serum albumin fraction V by [gamma-32P]ATP. This process also required a nucleoside diphosphate (e.g. alpha, beta-methylene-ADP). Nucleoside diphosphates thus act on HMG-CoA reductase kinase, not on HMG-CoA reductase. For inactivation of HMG-CoA reductase, the ability of nucleoside triphosphates to replace ATP decreased in the order ATP greater than dATP greater than GTP greater than ITP, UTP. TTP and CTP did not replace ATP. Both for inactivation of HMG-CoA reductase and for phosphorylation of bovine serum albumin protein, the ability of nucleoside diphosphates to replace ADP decreased in the order ADP greater than CDP, dADP greater than UDP. GDP did not replace ADP. Nucleoside di- and triphosphates thus appear to bind to different sites on HMG-CoA reductase kinase. Nucleoside diphosphates act as allosteric activators of HMG-CoA reductase kinase. For inactivation of HMG-CoA reductase by HMG-CoA reductase kinase, Km for ATP was 140 microM and the activation constant, Ka, for ADP was 1.4 mM. The concentration of ADP required to modulate reductase kinase activity in vitro falls within the physiological range. Modulation of HMG-CoA reductase kinase activity, and hence of HMG-CoA reductase activity, by changes in intracellular ADP concentrations thus may represent a control mechanism of potential physiological significance.  相似文献   

13.
A calmodulin-dependent protein kinase has been purified from rat spleen. The enzyme showed a remarkably similar substrate specificity and kinetic parameters to those of rat brain calmodulin-dependent protein kinase II, and exhibited cross-reactivity to a monoclonal antibody against rat brain calmodulin-dependent protein kinase II, indicating that the enzyme might be a calmodulin-dependent protein kinase II isozyme. The sedimentation coefficient was 13.9S, the Stokes radius was 67 A, and the molecular weight was calculated to be 380,000. The purified enzyme gave five polypeptides bands, corresponding to molecular weights of 51,000, 50,000, 21,000, 20,000, and 18,000, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Incubation of the purified enzyme with Ca2+, calmodulin, and ATP under phosphorylating conditions induced the phosphorylation of all five polypeptides. When the logarithm of the velocity of the phosphorylation was plotted against the logarithm of the enzyme concentration (van't Hoff plot), slopes of 0.89, 0.94, and 1.1 were obtained for the phosphorylation of the 50/51-kDa doublet, 20/21-kDa doublet, and 18-kDa polypeptide, respectively. These results indicate that the phosphorylation of the five polypeptides is an intramolecular process, and further indicate that all five polypeptides are subunits of this enzyme. Of the five polypeptides, only the 50- and 51-kDa polypeptides bound to [125I]calmodulin, the other polypeptides not binding to it. A number of isozymic forms of calmodulin-dependent protein kinase II so far demonstrated in various tissues are known to be composed of subunits with molecular weights of 50,000 to 60,000 which can bind to calmodulin. Thus a new type of calmodulin-dependent protein kinase II was demonstrated in the present study.  相似文献   

14.
Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) is a cytosolic unconventional glycolytic enzyme of plant cells regulated by phosphorylation in heterotrophic tissues. After interaction with 14-3-3 proteins, the phosphorylated enzyme becomes less active and more sensitive to regulation by adenylates and inorganic pyrophosphate. Here, we acknowledge that in wheat (Triticum aestivum), np-Ga3PDHase is specifically phosphorylated by the SnRK (SNF1-related) protein kinase family. Interestingly, only the kinase present in heterotrophic tissues (endosperm and shoots, but not in leaves) was found active. The specific SnRK partially purified from endosperm exhibited a requirement for Mg(2+) or Mn(2+) (being Ca(2+) independent), having a molecular mass of approximately 200 kD. The kinase also phosphorylated standard peptides SAMS, AMARA, and SP46, as well as endogenous sucrose synthase, results suggesting that it could be a member of the SnRK1 subfamily. Concurrently, the partially purified wheat SnRK was recognized by antibodies raised against a peptide conserved between SnRK1s from sorghum (Sorghum bicolor) and maize (Zea mays) developing seeds. The wheat kinase was allosterically inhibited by ribose-5-phosphate and, to a lesser extent, by fructose-1,6-bisphosphate and 3-phosphoglycerate, while glucose-6-phosphate (the main effector of spinach [Spinacia oleracea] leaves, SnRK1) and trehalose-6-phosphate produced little or no effect. Results support a distinctive allosteric regulation of SnRK1 present in photosynthetic or heterotrophic plant tissues. After in silico analysis, we constructed two np-Ga3PDHase mutants, S404A and S447A, identifying serine-404 as the target of phosphorylation. Results suggest that both np-Ga3PDHase and the specific kinase could be under control, critically affecting the metabolic scenario involving carbohydrates and reducing power partition and storage in heterotrophic plant cells.  相似文献   

15.
Rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was purified to homogeneity using agarose-HMG-CoA affinity chromatography. Additional protein was isolated from the affinity column with 0.5 M KCl that demonstrated no HMG-CoA reductase activity, yet comigrated with purified HMG-CoA reductase on sodium dodecyl sulfate-polyacrylamide gels. This protein was determined to be an inactive form of HMG-CoA reductase by tryptic peptide mapping, reaction with anti-HMG-CoA reductase antibody, and coelution with purified HMG-CoA reductase from a molecular-sieving high-performance liquid chromatography column. This inactive protein was present in at least fourfold greater concentration than active HMG-CoA reductase, and could not be activated by rat liver cytosolic phosphoprotein phosphatases. Immunotitration studies with microsomal and solubilized HMG-CoA reductase isolated in the presence and absence of proteinase inhibitors suggested that the inactive protein was not generated from active enzyme during isolation of microsomes or freeze-thaw solubilization of HMG CoA reductase.  相似文献   

16.
The regulation of phytosterol biosynthesis in seeds is of interest to biotechnologists because of the efficacy of dietary phytosterols in reducing blood cholesterol in humans. Mevalonate synthesis via 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) is a key step in phytosterol biosynthesis. HMG-CoA reductase is inactivated by phosphorylation by SNF1-related protein kinase 1 (SnRK1). With the aim of increasing seed phytosterol levels, transgenic tobacco plants were produced expressing a full-length Arabidopsis (Arabidopsis thaliana) HMG-CoA reductase gene (HMG1) coding sequence, a modified HMG1 sequence encoding a protein lacking the target serine residue for phosphorylation by SnRK1, or a chimaeric sequence encoding the N-terminal domain of the Arabidopsis HMG1 enzyme fused with the catalytic domain of yeast HMG-CoA reductase, which lacks an SnRK1 target site. All three transgenes (35S-AtHMG1, 35S-AtHMG1m and 35S-AtScHMG1) were under the control of a cauliflower mosaic virus 35S RNA promoter. Levels of seed phytosterols were up to 2.44-fold higher in plants transformed with the 35S-AtHMG1m gene than in the wild-type, and were significantly higher than in plants expressing 35S-AtHMG1 or 35S-AtScHMG1. In contrast, levels of phytosterols in leaves of plants transformed with the 35S-AtHMG1m gene were unchanged, suggesting that regulation of HMG-CoA reductase by SnRK1 is an important factor in seeds but not in leaves. A total of 11 independent transgenic lines expressing 35S-AtHMG1m or 35S-AtScHMG1 also showed an altered flower phenotype, comprising a compact floret, prolonged flowering, short, pale petals, a protruding style, short stamens, late anther development, little or no pollen production, premature flower abscission and poor seed set. Because of this phenotype, the modified HMG-CoA reductase gene would have to be expressed seed specifically if it were to be engineered into a crop plant for biotechnological purposes.  相似文献   

17.
18.
Leucoplast pyruvate kinase from endosperm of developing castor oil seeds (Ricinus communis L.; cv Baker) has been purified 1370-fold to a specific activity of 41.1 micromoles pyruvate produced per minute per milligram protein. Nondenaturing polyacrylamide gel electrophoresis of the purified enzyme resulted in a single protein staining band that co-migrated with pyruvate kinase activity. However, following sodium dodecyl sulfate polyacrylamide electrophoresis, two major protein staining bands of 57.5 and 44 kilodaltons, which occurred in an approximate 2:1 ratio, respectively, were observed. The native molecular mass was approximately 305 kilodaltons. Rabbit antiserum raised against the final enzyme preparation effectively immunoprecipitated leucoplast pyruvate kinase. The 57.5- and 44-kilodalton polypeptides are immunologically related as both proteins cross-reacted strongly on Western blots probed with the rabbit anti-(developing castor seed endosperm leucoplast pyruvate kinase) immunoglobulin that had been affinity-purified against the 57.5-kilodalton polypeptide. In contrast, pyruvate kinases from the following sources showed no immunological cross-reactivity with the same immunoglobulin: the cytosolic enzyme from developing or germinating castor bean endosperm; chloroplastic pyruvate kinase from expanding leaves of the castor oil plant; chloroplastic or cytosolic pyruvate kinase from the green alga, Selenastrum minutum; and mammalian or bacterial pyruvate kinases.  相似文献   

19.
Microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase has been purified to apparent homogeneity by a process involving the following steps: solubilization from microsomes and chromatography on Affi-Gel Blue, phosphocellulose, Bio-Gel A 1.5m, and agarose-hexane-ATP. The apparent Mr of the purified enzyme as judged by gel-filtration chromatography is 205,000 and by sodium dodecyl sulfate-gel electrophoresis is 105,000. Immunoprecipitation of homogeneous reductase phosphorylated by reductase kinase and [γ-32P]ATP produces a unique band containing 32P bound to protein which migrates at the same Rf as the reductase subunit. Incubation of 32P-labeled HMG-CoA reductase with reductase phosphatase results in a time-dependent loss of protein-bound 32P radioactivity, as well as an increase in enzymic activity. Reductase kinase, when incubated with ATP, undergoes autophosphorylation, and a simultaneous increase in its enzymatic activity is observed. Tryptic treatment of immunoprecipitated, 32P-labeled HMG-CoA reductase phosphorylated with reductase kinase produces only one 32P-labeled phosphopeptide with the same Rf as one of the two tryptic phosphopeptides that have been reported in a previous paper. The possible existence of a second microsomal reductase kinase is discussed.  相似文献   

20.
Assay of HMG-CoA reductase kinase activity requires HMG-CoA reductase (reductase, E.C. 1.1.1.34) free of associated reductase kinase. Microsomal reductase insensitive to inactivation by Mg-nucleotides alone may be prepared by heating microsomes at 50 degrees C for 15 min. The reductase in these microsomes may subsequently be inactivated by Mg-nucleotides only after addition of reductase kinase. Inactivation is a linear function of time and of cytosol protein concentration and may be reversed by treatment with a phosphoprotein phosphatase. The extent of inactivation observed under standard conditions provides an assay for reductase kinase activity. Factors present in cytosol that hinder measurement of either reductase or reductase kinase activity must be removed or inhibited. Reductase phosphatase is inhibited by 50 mM NaF. Reductase kinase kinase activity is not expressed under the assay conditions used. Mg-Nucleotide-independent inhibitors of reductase activity are removed by chromatography on DEAE-Sephacel or Blue Sepharose. Mevalonate kinase and reductase kinase are separable by chromatography on DEAE-Sephacel or Sephadex G-200. We describe a rapid chromatographic procedure for separating reductase kinase of crude fractions from mevalonate kinase and from Mg-nucleotide-independent inhibitors of reductase activity. The 1.0 M KCl eluate from DEAE-Sephacel contains all of the cytosol reductase kinase activity. This method is applicable to measurement of reductase kinase activity in cytosol or more purified fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号