首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ovoperoxidase, an enzyme secreted by the eggs of the sea urchin Stronglycocentrotus purpuratus upon activation, catalyzes the formation of dityrosine residues in the fertilization envelope. This cross-linking reaction requires extracellular H2O2, which is produced by the egg during the cyanide-insensitive "respiratory burst" of fertilization. While investigating the possibility that the sea urchin oxidase might generate O2- as a precursor to H2O2, we discovered that ovoperoxidase possessed O2- degrading activity. Ovoperoxidase catalyzed the breakdown of O2- in a reaction that was sensitive to inhibition by catalase, indicating a requirement for H2O2. High concentrations of either O2- or H2O2 inhibited the O2- degrading activity of ovoperoxidase, as did the peroxidase inhibitors aminotriazole, azide, and phenylhydrazine. When ovoperoxidase was heated at 56 degrees C, it lost O2- degrading activity in parallel with peroxidase activity. In contrast, the copper-chelating agent diethyldithiocarbamate, which completely inactivated CuZn superoxide dismutase, failed to affect ovoperoxidase. The requirement for H2O2 and the inhibition by aminotriazole, azide, and phenylhydrazine support the hypothesis that ovoperoxidase catalyzes the breakdown of O2- by a peroxidative mechanism. Ovoperoxidase may play a role in protecting the developing embryo from oxidants derived from O2-.  相似文献   

2.
Inactivation of lignin peroxidase by phenylhydrazine and sodium azide   总被引:2,自引:0,他引:2  
Lignin peroxidase (LiP) is rapidly inactivated in a concentration-dependent manner by H2O2 and either phenylhydrazine or sodium azide. Full inactivation of isozyme 2b (H8) requires approximately 50 eq of phenylhydrazine or 80 eq of sodium azide. Anaerobic incubation of isozyme 2b with [14C]phenylhydrazine and H2O2 results in 77% loss of catalytic activity and covalent binding of 0.45 mol radiolabel/mol of enzyme. Comparable but not identical results are obtained with an isozyme mixture. A lag period is observed before the peroxidative activity can be measured when an aliquot of an incubation with sodium azide is diluted into the mixture used to assay residual catalytic activity. This lag is associated with reversible accumulation of a catalytically inert species with a Compound III-like spectrum. No meso-phenyl, iron-phenyl, or N-phenyl adducts are formed with phenylhydrazine but a low yield of what appears to be delta-meso-azidoheme is obtained with sodium azide. LiP is thus less susceptible to meso heme additions and more susceptible to oxidative heme degradation than horseradish peroxidase. The data suggest that the active of LiP resembles the closed structure of horseradish peroxidase more than it does the open structure of the globins, catalase, chloroperoxidase, or cytochrome P450.  相似文献   

3.
The nitrocellulose model and microphotometry were used to investigate whether in immunoperoxidase cytochemical methods the amount of final reaction product reflects the amount of cell surface antigen. The results obtained with four cytochemical peroxidase methods, i.e., those using diaminobenzidine/H2O2 (DAB/H2O)2, DAB/H2O2/COCl2, DAB/H2O2/imidazole, and silver intensification of the DAB end product, were compared first. The quantitative DAB/H2O2/imidazole method proved to be the most sensitive and was selected for further studies. Cell surface antigens prepared by solubilization of peritoneal macrophages with octyl-beta-D-glucopyranoside were immobilized on nitrocellulose. Monoclonal antibody binding to these cell antigens was detected by peroxidase immunocytochemistry. Comparison of the sensitivity of the indirect immunoperoxidase and the biotin-(strept)avidin immunoperoxidase methods on the basis of the highest detectable dilution of a cell lysate showed that these methods were equally sensitive. A linear relationship between the absorbance of the peroxidase reaction product and the amount of cell lysate immobilized on nitrocellulose was found for all three indirect immunoperoxidase methods. This proves that the amount of final immunocytochemical peroxidase reaction product is proportional to the amount of antigen in cell lysates. However, the relative expression of antigens in intact cells differs from that in cell lysates. Therefore, the present method to solubilize cells and immobilize cell antigens cannot be used to quantitate the antigen content of cells.  相似文献   

4.
The oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) by lignin peroxidase H2 from Phanerochaete chrysosporium and H2O2 was strongly inhibited by sodium azide. Inhibition was competitive with respect to veratryl alcohol (Ki = 1-2 microM) and uncompetitive with respect to H2O2. In contrast, sodium azide bound to the native enzyme at pH 6.0 with an apparent dissociation constant (KD) of 126 mM. Formation of azidyl radicals was detected by ESR spin trapping techniques. The enzymes is nearly completely inactivated in four turnovers. The H2O2-activated enzyme intermediate (compound I) reacted with sodium azide to form a new species rather than be reduced to the enzyme intermediate compound II. The new species has absorption maxima at 418, 540, and 570 nm, suggesting the formation of a ferrous-lignin peroxidase-NO complex. Confirmation of this assignment was obtained by low-temperature ESR spectroscopy. An identical complex could be simulated by the addition of nitrite to the reduced enzyme. The enzyme intermediate compound II is readily reduced by sodium azide to native enzyme with essentially no loss of activity.  相似文献   

5.
We describe a simple and effective method for inhibition of endogenous peroxidase activity in the immunoperoxidase technique. Specimens are pre-treated with a mixture of azide and hydrogen peroxide, which is then followed by an indirect immunoperoxidase procedure. Comparison studies showed no significant loss of antigenicity or morphological details by this pre-treatment. The method is most useful for evaluating cell-specific antigens on specimens that have abundant endogenous peroxidase activity, such as blood and bone marrow.  相似文献   

6.
It is well known that catalase is transformed to nitric oxide-Fe2+-catalase by hydrogen peroxide (H2O2) plus azide. In this report, we show that myeloperoxidase is also inactivated by H2O2 plus azide. Utilizing this system, we studied the presence and source of intracellular H2O2 generated by activated neutrophils. Stimulation of neutrophils with phorbol myristate acetate (PMA, 100 ng/ml) plus azide (5 mM) for 30 min completely inactivated intragranular myeloperoxidase and reduced cytosolic catalase to 35% of resting cells. This intracellular inactivation of heme enzymes did not occur in normal neutrophils incubated with either PMA or azide alone or in neutrophils from patients with chronic granulomatous disease (CDG) which cannot produce H2O2 in response to PMA. Incubation of neutrophils with azide and a H2O2 generating system (glucose-glucose oxidase) inactivated 41% of neutrophil myeloperoxidase. Glutathione-glutathione peroxidase (GSH-GSH peroxidase), an extracellular H2O2 scavenger, totally protected neutrophil myeloperoxidase from inactivation by azide plus glucose-glucose oxidase. In addition, when a mixture of normal and CGD cells was stimulated with PMA in the presence of azide, 90% of the myeloperoxidase in CGD neutrophils was inactivated. Therefore, H2O2 released extracellularly from activated neutrophils can diffuse into cells. In contrast, myeloperoxidase in normal polymorphonuclear leukocytes stimulated with PMA in the presence of azide and GSH-GSH peroxidase was 75% inactivated. Thus, the results indicate that a GSH-GSH peroxidase-insensitive pool of H2O2 is also generated, presumably at the plasma membrane, and this pool of H2O2 can undergo direct internal diffusion to inactivate myeloperoxidase.  相似文献   

7.
The peroxidase from Coprinus macrorhizus is inactivated by phenylhydrazine or sodium azide in the presence of H2O2. Inactivation by phenylhydrazine results in formation of the delta-meso-phenyl and 8-hydroxymethyl derivatives of the prosthetic heme group and covalent binding of the phenyl moiety to the protein but not in the detectable formation of Fe-phenyl- or N-phenylheme adducts. Alkylhydrazines are catalytically oxidized but do not inactivate the enzyme. Catalytic oxidation of sodium azide produces the azidyl radical and results in its addition to the delta-meso position of the prosthetic heme group. Comparison of the heme adducts obtained with C. macrorhizus peroxidase with those generated by horseradish peroxidase shows that the regiochemistry of the addition reactions is the same in both cases. The results suggest that substrates interact primarily or exclusively with the heme edge rather than the ferryl oxygen of C. macrorhizus peroxidase and indicate that the interaction occurs with the same sector of the heme edge as in horseradish peroxidase. The active-site topologies of this pair of plant and fungal peroxidases thus appear to be similar, although the observation that alkylhydrazines add to the heme edge of horseradish but not C. macrorhizus peroxidase clearly shows that there are significant differences in the two active sites.  相似文献   

8.
Many peroxidase inhibitors have been used in horseradish peroxidase (HRP) mediated immunostaining and in situ hybridization to quench background peroxidase activity. However, the efficacy of these inhibitors has been controversial, partially due to the lack of a quantitative study. Tyramide signal amplification (TSA) is much more sensitive than other HRP-mediated methods but its super-sensitivity also demands effective inhibition of background peroxidase activity. In searching for an effective peroxidase inhibitor, we have systematically evaluated the efficacy of several peroxidase inhibitors by quantifying the fluorescence intensity in cultured fibroblasts and tissue sections treated with the inhibitors. For cultured cells, 0.05 mM of phenylhydrazine and 1 unit/ml of glucose oxidase gave only moderate inhibition of HRP activity while 1 mM of sodium azide (NaN3), 3% of hydrogen peroxide (H2O2), NaN3/H2O2 combined and 0.02 N hydrochloric acid (HCl) provided more complete inhibition. However, the inhibitory effect of NaN3/H2O2 is reversible upon removal of the inhibitors and followed by incubation and wash to mimic antibody interactions. Similar results were obtained from rat skin wound tissues that have strong endogenous peroxidase activity. Our results recommend the use of HCl and caution the use of phenylhydrazine, glucose oxidase, NaN3 and H2O2 as potent peroxidase inhibitors.  相似文献   

9.
Nonsteroidal anti-inflammatory drugs inhibit gastric peroxidase activity   总被引:1,自引:0,他引:1  
The peroxidase activity of the mitochondrial fraction of rat gastric mucosa was inhibited with various nonsteroidal anti-inflammatory drugs (NSAIDs) in vitro. Indomethacin was found to be more effective than phenylbutazone (PB) or acetylsalicylic acid (ASA). Mouse gastric peroxidase was also very sensitive to indomethacin inhibition. Indomethacin has no significant effect on submaxillary gland peroxidase activity of either of the species studied. Purified rat gastric peroxidase activity was inhibited 75% with 0.15 mM indomethacin showing half-maximal inhibition at 0.04 mM. The inhibition could be withdrawn by increasing the concentration of iodide but not by H2O2. NSAIDs inhibit gastric peroxidase activity more effectively at acid pH (pH 5.2) than at neutral pH. Spectral studies showed a bathochromic shift of the Soret band of the enzyme with indomethacin indicating its interaction at or near the heme part of the enzyme.  相似文献   

10.
EDTA (4 mM) blocks the oxidation of iodide to I-3 (increase of extinction at 353 nm) by H2O2 catalyzed by horseradish peroxidase, which is reversed by the addition of an equimolar concentration of Zn2+. Addition of suboptimal concentration of EDTA (2 mM) not only decreases the rate of forward reaction of I-3 formation but also causes loss of extinction of the same when I-3 is generated. The loss of extinction of I-3 is proportional to the enzyme concentration and is blocked by azide, the inhibitor of the peroxidase. EDTA also causes bleaching of nonenzymatically formed I-3 (from iodide and H2O2) only in the presence of horseradish peroxidase, and the effect is reversed by the equimolar concentration of Zn2+. Both the bleaching of I-3 by EDTA and reversal of EDTA effect by Zn2+ are sensitive to azide. The decrease of extinction of I-3 (formed by dissolving iodine in KI solution) is dependent on EDTA, H2O2, and horseradish peroxidase. Molecular iodine is also bleached but at a slower rate than I-3. Evidence is presented to show that this bleaching of I-3 is due to enzymatic conversion of I-3 to iodide in presence of EDTA and H2O2 and this involves pseudocatalatic degradation of H2O2 to O2.  相似文献   

11.
Extracellular release of superoxide anion (O-2) and hydrogen peroxide (H2O2) during the respiratory burst of porcine and human neutrophils was studied by using diacetyldeuteroheme-substituted horseradish peroxidase as a trapping agent for these oxygen derivatives. The method permitted simultaneous measurement of oxygen consumption and formation of both O-2 and H2O2 in a single reaction mixture. When neutrophils were stimulated with phorbol myristate acetate in the presence of the heme-substituted peroxidase, a rapid accumulation of compound III, a complex of the enzyme with O-2, was observed accompanying an increase in oxygen consumption. During the process, amounts of compound III formed and oxygen consumed were stoichiometric, and no compound II, an indicator of H2O2 formation, was observed. These results establish that neutrophils stimulated with the phorbol ester produce exclusively O-2 as the primary oxygen metabolite and release it into the extracellular medium. When a limited amount of opsonized zymosan was used as the stimulus, compound III formation was also observed but it ceased at an early stage of oxygen consumption. When a sufficient amount of azide was included in the system, however, formation of compound II was noted in the later stage of oxygen consumption. The findings suggest that O-2, formed during phagocytosis, is converted to H2O2 within phagosomes and then diffuses out into the extracellular medium when its decomposition by catalase and/or peroxidases is blocked by azide.  相似文献   

12.
Summary The inhibitory effect of phenylhydrazine and azide combined with either pre-formed or nascent hydrogen peroxide H2O2 upon endogenous peroxidatic activity, expressed by tissue eosinophils in different disease states, was investigated. It was found that whilst endogenous peroxidatic activity due to eosinophils in a Hodgkin's disease and a histiocytosis X case were adequately inhibited by phenylhydrazine combined with pre-formed or nascent H2O2, the eosinophils in theOnchocerca volvulus nodule were either not at all or only partly inhibited by the two regimens. On the other hand, a combination of azide with nascent H2O2 proved consistently effective against this resistant form of endogenous peroxidatic activity. Using human tonsil sections this protocol was shown to be non-deleterious to T4(CD4), T6(CD1) and T8(CD8) lymphocyte surface antigens as evidenced by the application of a standard indirect immunoperoxidase technique and the relevant monoclonal antibodies.  相似文献   

13.
Modeling studies suggest that electrons are transferred from cytochrome c to cytochrome c peroxidase (CcP) with cytochrome c predominantly bound at a site facing the gamma-meso edge of the CcP prosthetic heme group (Poulos, T.L., and Kraut, J. (1980) J. Biol. Chem. 255, 10322-10330). As shown here, guaiacol and ferrocyanide are oxidized at a different site of CcP. Thus, the oxidations of cytochrome c and guaiacol are differentially inactivated by phenylhydrazine and sodium azide. The loss of guaiacol oxidation activity correlates with covalent binding of 1 equivalent of [14C]phenylhydrazine to the protein, whereas the slower loss of cytochrome c activity correlates with the appearance of a 428-nm absorbance maximum attributed to the formation of a sigma-phenyl-iron heme complex. The delta-meso-phenyl and 8-hydroxymethyl derivatives of heme are formed as minor products. Catalytic oxidation of azide to the azidyl radical results in inactivation of CcP and formation of delta-meso-azidoheme. Reconstitution of apo-CcP with delta-meso-azido-, -ethyl-, and -(2-phenylethyl)heme yields holoproteins that give compound I species with H2O2 and exhibit 80, 59, and 31%, respectively, of the control kcat value for cytochrome c oxidation but little or no guaiacol or ferrocyanide oxidizing activity. Conversely, CcP reconstituted with gamma-meso-ethylheme is fully active in the oxidation of guaiacol and ferrocyanide but only retains 27% of the cytochrome c oxidizing activity. These results indicate that guaiacol and ferrocyanide are primarily oxidized near the delta-meso-heme edge rather than, like cytochrome c, at a surface site facing the gamma-meso edge.  相似文献   

14.
Y Matsumoto 《Histochemistry》1985,83(4):325-330
The use of the avidin-biotin technique in immunoperoxidase staining provides a simple and highly sensitive method for detecting the localization of antigens defined by monoclonal antibodies. However, endogenous biotin, which is widely distributed in tissues, often causes non-specific staining by binding to avidin [endogenous avidin-binding activity (EABA)]. Endogenous peroxidase activity (EPA) also makes the estimation of specific staining difficult. In the present study, several methods for the inhibition of EABA and/or EPA were examined using the avidin-biotin technique and monoclonal antibodies against murine Mac-1 and Ia antigen. Of these, the overnight incubation of sections in 40% methanol in phosphate-buffered saline containing 0.3% hydrogen peroxide gave the best result, as it inhibited EABA and EPA simultaneously without denaturating of the antigenic determinants recognized by the monoclonal antibodies.  相似文献   

15.
Manganese peroxidase (MnP), which normally oxidizes Mn2+ to Mn3+, is rapidly and completely inactivated in an H2O2-dependent reaction by 2 equivalents of sodium azide. The inactivation is paralleled by formation of the azidyl radical and high yield conversion of the prosthetic heme into a meso-azido adduct. The meso-azido enzyme is oxidized by H2O2 to a Compound II-like species with the Soret band red-shifted 2 nm relative to that of native Compound II. The time-dependent decrease in this Compound II-like spectrum (t1/2 = 2.3 h) indicates that the delta-meso azido heme is more rapidly degraded by H2O2 than the prosthetic heme of control enzyme (t1/2 = 4.8 h). MnP is also inactivated by phenyl-, methyl-, and ethylhydrazine. The phenylhydrazine reaction is too rapid for kinetic analysis, but KI = 402 microM and kinact = 0.22/min for the slower inactivation by methylhydrazine. Reaction with phenylhydrazine at pH 4.5 does not yield iron-phenyl, N-phenyl, or meso-phenyl heme adducts. Ethylhydrazine inactivates the enzyme both at pH 4.5 and 7.0, but only detectably produces delta-meso-ethyl-heme at pH 7.0. Reconstitution of apo-MnP with hemin or delta-meso-ethylheme yields enzyme with, respectively, 50 and 5% of the native activity. The delta-meso-alkyl group thus suppresses most of the catalytic activity of the enzyme even though a Compound II-like species is still formed with H2O2. Finally, Co2+ inhibits the enzyme competitively with respect to Mn2+ but does not inhibit its inactivation by azide or the alkylhydrazines. The results argue that substrates interact with the heme edge in the vicinity of the delta-meso-carbon. They also suggest that Mn2+ and Co2+ bind to a common site close to the delta-meso-carbon without blocking the approach of small molecules to the heme edge. An active site model is proposed that accommodates these results.  相似文献   

16.
Significant quantitative differences in ethanol yields along with repression in acetic acid production were observed in Clostridium thermocellum strains SS21 and SS22 in the presence of H 2 , acetone and sodium azide. Exogenous H 2 addition (1.0 atm) increased the ethanol yields to 0.40 g/g and ethanol to acetate ratio to 5.75 in strain SS21 but was inhibitory in strain SS22. Addition of acetone reversed the inhibition caused by H 2 and increased the ethanol yields and ethanol to acetate ratio of strain SS22 up to 0.40 g/g and 7.9, respectively. Enhancement in ethanol yields up to 0.40 g/g and 0.41 g/g and ethanol to acetate ratio up to 3.63 and 8.1 were observed in the presence of 0.2 mM and 0.15 mM concentration of sodium azide by strains SS21 and SS22, respectively.  相似文献   

17.
Nishida T  Morita N  Yano Y  Orikasa Y  Okuyama H 《FEBS letters》2007,581(22):4212-4216
When the eicosapentaenoic acid (EPA)-deficient mutant strain IK-1Delta8 of the marine EPA-producing Shewanella marinintestina IK-1 was treated with various concentrations of hydrogen peroxide (H(2)O(2)), its colony-forming ability decreased more than that of the wild type. Protein carbonylation, induced by treating cells with 0.01 mM H(2)O(2) under bacteriostatic conditions, was enhanced only in cells lacking EPA. The amount of cells recovered from the cultures was decreased more significantly by the presence of H(2)O(2) for cells lacking EPA than for those producing EPA. Treatment of the cells with 0.1 mM H(2)O(2) resulted in much lower intracellular concentrations of H(2)O(2) being consistently detected in cells with EPA than in those without EPA. These results suggest that cellular EPA can directly protect cells against oxidative damage by shielding the entry of exogenously added H(2)O(2) in S. marinintestina IK-1.  相似文献   

18.
Incubation of horseradish peroxidase with phenylhydrazine and H2O2 markedly depresses the catalytic activity and the intensity, but not position, of the Soret band. Approximately 11-13 mol of phenylhydrazine and 25 mol of H2O2 are required per mol of enzyme to minimize the chromophore intensity. The enzyme retains some activity after such treatment, but this activity is eliminated if the enzyme is isolated and reincubated with phenylhydrazine. The prosthetic heme of the enzyme does not react with phenylhydrazine to give a sigma-bonded phenyl-iron complex, as it does in other hemoproteins, but is converted instead to the delta-mesophenyl and 8-hydroxymethyl derivatives. The loss of activity is due more to protein than heme modification, however. The inactivated enzyme reacts with H2O2 to give a spectroscopically detectable Compound I. The results imply that substrates interact with the heme edge rather than with the activated oxygen of Compounds I and II and specifically identify the region around the delta-meso-carbon and 8-methyl group as the exposed sector of the heme. Horseradish peroxidase, in contrast to cytochrome P-450, generally does not catalyze oxygen-transfer reactions. The present results indicate that oxygen-transfer reactions do not occur because the activated oxygen and the substrate are physically separated by a protein-imposed barrier in horseradish peroxidase.  相似文献   

19.
Membranes from free-living Rhizobium japonicum were isolated to study electron transport components involved in H2 oxidation. The H2/O2 uptake rate ratio in membranes was approximately 2. The electron transport inhibitors antimycin A, cyanide, azide, hydroxylamine, and 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) inhibited H2 uptake and H2-dependent O2 uptake significantly. H2-reduced minus O2-oxidized absorption difference spectra revealed peaks at 551.5, 560, and 603 nm, indicating the involvement of cytochromes c, b, and a-a3, respectively. H2-dependent cytochrome reduction was completely inhibited in the presence of 0.15 mM HQNO. This inhibition was relieved by the addition of 0.1 mM menadione. Evidence is presented for the involvement of two b-type cytochromes in H2 oxidation. One b-type cytochrome was not reduced by ascorbate and had an absorption peak at 560 nm. The reduction of this cytochrome by H2 was not inhibited by cyanide. A second b-type cytochrome, cytochrome b', was not reduced by H2 in the presence of cyanide. This cytochrome had an absorption peak at 558 nm. Carbon monoxide difference spectra with H2 as reductant provided evidence for the involvement of cytochrome o as well as cytochrome a3 in H2 oxidation. H2 uptake activity in cell-free extracts was inhibited by UV light irradiation. Most of the activity of the UV-treated extracts was restored with the addition of ubiquinone. The restored activity was inhibited by cyanide. A branched electron transport pathway from H2 to O2 is proposed.  相似文献   

20.
Porphobilinogen oxygenase and horseradish peroxidase show dual oxygenase and peroxidase activities. By treating porphobilinogen oxygenase with phenylhydrazine in the presence of H2O2 both activities were inhibited. When horseradish peroxidase was treated in the same manner only the peroxidase activity was lost while its oxygenase activity toward porphobilinogen remained unchanged. The phenylhydrazine treatment alkylated the prosthetic heme group of porphobilinogen oxygenase and N-phenylheme as well as N-phenylprotoporphyrin IX were isolated from the treated hemoprotein. In horseradish peroxidase the modified heme was mainly 8-hydroxymethylheme. The apoproteins of the alkylated enzymes were isolated and recombined with hemin IX. The oxygenase and peroxidase activities of porphobilinogen oxygenase were entirely recovered in the reconstituted enzyme, while the reconstituted horseradish peroxidase regained 75% of its peroxidase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号