首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
. Tufts of multiple shoots were produced from dormant, axillary buds of pineapple in vitro. Tiny shoots (2-5 mm) isolated from the tuft of multiple shoots were encapsulated in 3% sodium alginate prepared using hormone-free Murashige and Skoog's basal medium, Murashige and Skoog's vitamins, 0.56 mM myo-inositol and 0.06 M sucrose. The encapsulated shoots represented synthetic seeds that germinated and formed roots in vitro after subculture onto one of the following media solidified with 0.8% agar: (1) hormone-free Murashige and Skoog's basal medium, Murashige and Skoog's vitamins, 0.56 mM myo-inositol and 0.06 M sucrose (Pin1), (2) Murashige and Skoog's basal medium, Murashige and Skoog's vitamins, 0.56 mM myo-inositol, 0.06 M sucrose, 9.67 µM 1-naphthalene acetic acid, 9.84 µM indole-3-butyric acid and 9.29 µM kinetin (Pin2), and (3) White's basal medium, White's vitamins, 0.56 mM myo-inositol, 0.03 M sucrose, 0.54 µM 1-naphthalene acetic acid and 1.97 µM indole-3-butyric acid (Pin3). Pretreatment of shoots in either liquid Pin3 or Pin4 medium (White's basal medium, White's vitamins, 0.56 mM myo-inositol, 0.03 M sucrose, 10.8 µM 1-naphthalene acetic acid and 39.4 µM indole-3-butryic acid) was required for development into plantlets with roots after culture on either Pin1, Pin2 or Pin3 media. One hundred percent germination of synthetic seeds to plantlets occurred after pretreatment of shoots in liquid Pin4 medium for 12 h followed by culture of synthetic seeds on Pin2 medium. Synthetic seeds stored at 4°C remained viable without sprouting for up to 45 days. Plantlets produced in vitro from synthetic seeds were successfully established in soil. The protocol provides an easy and novel propagation system for pineapple, an otherwise vegetatively propagated fruit crop.  相似文献   

2.
Globular stage somatic embryos were induced in callus cultures of Rosa Heritage 2 Alister Stella Gray on medium containing 13.5 µM 2,4-dichlorophenoxyacetic acid (2,4-D) and developed to the cotyledonary stage on medium containing 9 µM 2,4-D. Cotyledonary-stage embryos were transferred to germination media with or without 1.5 µM 6-benzyladenine (BA) and with or without 44 µM methyl laurate (Mela). BA and Mela both promoted the development of shoots and roots and increased the frequency of bipolar germinations. An average of 56.5% (SEdž.1%) embryos on medium containing both BA and Mela underwent bipolar germinations compared with less than 20% in treatments where either or both were excluded. The effectiveness of BA and Mela was reduced if Mela was included in the development medium or if the concentration of salts and vitamins in the germination media was sub-optimal. There was evidence that growth at one pole of the somatic embryo promoted development at the other.  相似文献   

3.
In vitro root culture of yellow wort (Blackstonia perfoliata (L.) Huds.) was initiated on Murashige and Skoog (MS) medium. In the presence of benzylaminopurine (BAP) numerous adventitious buds formed, which developed into shoots. Presence of indole-3-butyric acid (IBA) in media significantly decreased number of buds, but increased development of lateral roots. On hormone-free medium shoots successfully rooted and developed flowers and viable seeds that formed another generation. Shoot cultures of B. perfoliata inoculated with suspension of Agrobacterium rhizogenes strain A4M70GUS developed hairy roots at 3 weeks and they were cultured on hormone-free MS medium. Spontaneous shoot regeneration occurred in 3 clones.  相似文献   

4.
Summary Propagation and conservation of four pharmaceutically important herbs, Ocimum americanum L. syn. O. canum Sims. (hoary basil); O basilicum L. (swett basil); O. gratissimum L. (shrubby basil); and O. sanctum L. (sacred basil) was attempted using synthetic seed technology. Synthetic seeds were produced by encapsulating axillary vegetative buds harvested from garden-grown plants of these four Ocimum species in calcium alginate gel. The gel contained Murashige and Skoog (MS) nutrients and 1.1-4.4 μM benzyladenine (BA). Shoots emerged from the encapsulated buds on all six planting media tested. However, the highest frequency shoot emergence and maximum number of shoots per bud were recorded on media containing BA. Of the six planting media tested, both shoot and root emergence from the encapsulated buds in a single step was recorded on growth regulator-free MS medium as well as on vermi-compost moistened with halfstrength MS medium. Rooted shoots were retrieved from the encapsulated buds of O. americanum, O. basilicum, and O. sanctum on these two media, whereas shoots of O. gratissimum failed to root. The encapsulated buds could be stored for 60 d at 4°C. Plants retrieved from the encapsulated buds were hardened off and established in soil.  相似文献   

5.
贺竹梅  杨貌仙   《广西植物》1991,(4):316-323+396
本文详细报道了从秃杉(Taiwania flousiana Gaussen)离体胚诱导不定芽、不定根及从无菌苗茎端培养再生植株的过程。诱导不定芽要求较低的蔗糖浓度(以3%最好);同时BA是必须的,在附加0.1—3 mg/1 BA的White培养基上,从离体胚的子叶或胚轴上诱导了不定芽的发生(以1 mg/1最好);NAA与BA结合使用,对不定芽诱导无促进作用;适当提高光照有利于不定芽的诱导。在诱导不定芽的同时,在子叶表面还观察到有许多无结构的“不定突起”。不定芽起源于子叶表皮下1—2层细胞。IBA对诱导离体胚上产生不定根效果较好。在有或无生长素的培养基上,从生长1月龄的无菌苗茎端培养获得了不定根的产生,在加有细胞分裂索的培养基上,从无菌苗上产生了腋芽。  相似文献   

6.
The addition of 40 mM putrescine (Put) to Murashige and Skoog's (MS) medium resulted in increased shoot multiplication and shoot growth in untransformed plants relative to transformed plants of Cichorium intybus L. Put at a concentration of 40 mM also resulted in flowering in both systems on the 28th day, with elevated titers of endogenous conjugated Put and spermine (Spm) in both untransformed and transformed plants. The addition of 40 µM AgNO3 to untransformed axillary buds of C. intybus L. cultured on MS media resulted in increased shoot multiplication (36.9DŽ.63 shoots per culture) and increased shoot growth (7.82ǂ.76 cm) as compared to transformed ones (11.6ǂ.89 shoots per culture; 3.20ǂ.24 cm). Moreover, cultures treated with 40 µM AgNO3 showed in vitro flowering on the 28th day in both systems, with the endogenous levels of conjugated spermine being higher in untransformed plants than in transformed ones. The morphogenetic response and the endogenous conjugated pool of polyamines were lower following !-DL-difluromethylarginine and !-DL-difluromethylornithine treatments; the addition of put (40 mM) and AgNO3 (40 µM) restored these to normal levels. Under exogenous put feeding, ethylene production was lower in both the untransformed and transformed cultures. We believe that an interplay between polyamine and ethylene biosynthesis is involved in regulating the morphogenetic response in both transformed and untransformed shoots of C. intybus. The response to AgNO3 and Put treatment was not altered by the transformation process.  相似文献   

7.
Alternative methods for in vitro shoot culture of Cleome rosea, a Brazilian herbaceous species with ornamental value and medicinal potential, were evaluated. A protocol for rapid in vitro multiplication of roots, a valuable source of medicinal compounds, was also developed. Stem explants were cultured in liquid media (continuous immersion and paper bridge), while root explants were cultivated in continuous immersion and on solidified media. The highest numbers of shoots, 20 ± 4.6 shoots/explant, were obtained from stem explants incubated in a continuous immersion system in a liquid medium supplemented with 2.2 μM BA. Root explants cultivated in liquid media produced only hyperhydrous adventitious shoots. However, these explants generated 5.8 ± 0.8 shoots/explant by indirect organogenesis when cultivated on solidified medium supplemented with 2.2 μM BA. In addition, root multiplication was achieved in liquid medium in the presence of α-naphthaleneacetic acid. Adventitious shoots developed on newly formed roots when inoculated on solidified medium supplemented with 2.2 μM BA. Shoot microcuttings developed roots when transferred onto solidified MS medium without growth regulators. Rooted microcuttings were efficiently acclimatized when transferred ex vitro.  相似文献   

8.
Caryopsis culture of a minor millet (Paspalum scrobiculatum L. cv. PSC 1) on N6 medium supplemented with high concentrations of thidiazuron (TDZ, 11.25 µM and 22.5 µM), a phenylurea derivative known to simulate cytokinin action, resulted in the formation of multiple shoots from the base of the seedling. This is the first time that multiple-shoot formation by a seedling cultured on TDZ without a callus interphase has been reported in graminaceous crop plants. The presence of a cytokinin, 6-benzylaminopurine (BAP), at low or high concentrations failed to evoke any morphogenic response. The presence of the auxin 2,4-dichlorophenoxyacetic acid (2,4-D, 4.5 µM) either alone or with BAP (4.5 µM) resulted in the formation of embryogenic callus from the base of the seedlings, which subsequently differentiated into somatic embryos. The combination of TDZ and the auxin (4.5 µM, 2,4-D) in the medium stimulated the differentiation of shoot buds in embryogenic callus cultures. This effect of TDZ, noted for the first time in a monocotyledonous plant, was evident in terms of a significant increase in the frequency of shoot-bud formation in embryogenic callus cultures and occurred only at a high concentration of TDZ (11.25 µM). This requirement for a high concentration of TDZ for the induction of multiple shoots from cultured seedlings or shoot buds in an embryogenic callus culture of a monocot is contrary to its effect at low concentrations in dicotyledonous plants. Complete plantlets, derived either from somatic embryos or shoot buds, could be regenerated on hormone-free basal medium or on basal medium fortified with activated charcoal (0.5%). Following a gradual acclimatization in a culture room, these regenerants survived on transfer to soil and ultimately set seed.  相似文献   

9.
Summary Thirteen soybean genotypes representing maturity groups IV−VI were compared for organogenic responses on three media cultured under two lighting conditions with hypocotyl sections excised from 7-d-old seedlings. All soybean lines responsed by producing adventitious shoots on the acropetal end of the hypocotyl explants, confirming genotype-independence of shoot initiation. Media containing 6-benzyladenine (BA; 5.0–10 μM) induced the greatest numbers of shoots. Histological studies confirmed the adventitious nature of arising shoots by indicative formation of meristematic zones and shoot primordia from parenchymatous tissues of central pith and plumular trace regions of the hypocotyl. Incompletely excised cotyledonary buds also contributed to shoot initiation. Degrees of responses were media-dependent and varied with regard to genotype. Centennial, Epps, and Lyon gave the greatest individual responses. Between cultivars (across all treatments), the regeneration potential (percentage of explants producing meristem-like structures or shoot primordia) 4 wk after initiation ranged from 47 to 75%. Four wk later, regenerative ability (number of shoots produced per responding explant) and regeneration efficiency (number of shoots produced per explant plated) yielded 1.4–7.1 and 1.0–5.0 shoots, respectively. The optimized protocol included initiation on a medium containing 5.0 μM BA for 4 wk, then transfer onto a shoot elongation medium (0.36 μM BA) for 4 wk. For 11 genotypes tested, 66–100% of excised shoots produced roots after 4 wk on media containing 12.5–29.2 μM indole-3-butyric acid. Of 109 regenerants transplanted to soil, 94% survived and no sterility has been observed on those mature enough to flower.  相似文献   

10.
An efficient transformation system for the medicinal and aromatic plant, Pogostemon cablin Benth was developed by using agropine-type Agrobacterium rhizogenes ATCC15834. Hairy roots formed directly from the cut edges of leaf explants or via callus stage 8 days after inoculation with the bacterium. The highest frequency of leaf explant transformation by Agrobacterium rhizogenes ATCC15834 was about 80% after infection for 25 days. Hairy roots grew rapidly on plant growth regulators (PGRs)-free Murashige and Skoog (MS) or 6,7-V medium and had characteristics of transformed roots such as fast growth and high lateral branching. The PCR amplification showed that rol genes of Ri plasmid of A. rhizogenes were integrated and expressed into the genome of transformed hairy roots. The hairy root line, PL6, grew very slowly in the first 8 days, then grew very quickly between day 8 and day 24. The optimum medium for callus induction of hairy roots consisted of 2.0 mg l−1 benzyladenine (BA) and 0.1 mg/l α-naphthaleneacetic acid (NAA); while optimum medium for adventitious shoot regeneration from these cultures consisted of 0.1 mg l−1 BA and 0.1 mg l−1 NAA. Adventitious shoots could be rooted on 1/2MS. Southern blot analysis confirmed that rol genes of TL-DNA of Ri plasmid was integrated with at least three copies into the genome of hairy roots- regenerated P. cablin plants. The results presented provide a solid foundation for production of patchouli essential oil from hairy roots or its regenerated plants and also provide possibilities for utilization of artifical polyploidization or chemical mutation of hairy roots for improving germplasm and breeding of a new cultivar of P. cablin.  相似文献   

11.
Summary Micropropagation of the anti-cancer plant Camptotheca acuminata Decaisne from axillary buds and seed embryos was investigated. Axillary buds from greenhouse seedlings required a period of culture in media free of N6-benzyladenine (BA) before multiple shoot induction began. Direct induction of multiple shoots on BA-containing medium resulted in high mortality of the axillary buds. Multiple shoot induction from the greenhouse axillary buds was best achieved on B5 with 4.4 μM BA+0.5μM α-naphthaleneacetic acid, forming an average of three 2-mm tall shoots per bud in 8 wk. Elongation of these multiple shoots was successful at a lower BA level (0.22 μM) on B5 medium. Both in vitro and ex vitro rooting of the microcuttings was feasible with indole-3-butyric acid in the culture media, but ex vitro rooting led to high plantlet survival. Seed embryos were not ideal explants for multiple shoot induction. Shoot tips and axillary buds of in vitro-germinated seedlings showed an optimal multiple shoot formation on B5 with 8.9 μM BA, double the optimal BA level for greenhouse axillary buds. Using axillary buds to propagate C. acuminata plants in vitro is feasible for mass propagation of desired clonal lines high in camptothecin concentrations.  相似文献   

12.
The effect of exogenously supplied NAA and BA on the shoot and root formation in isolated petiole segments of Begonia×cheimantha was determined in vitro on a modified White medium at a constant temperature of 24°C. The best development of normally appearing plants was obtained on media containing 0.01 mg × 1?1 of NAA and 0.5 to 1.0 mg × 1?1 of BA. Lower concentrations of BA yielded no shoots, higher concentrations promoted shoot formation, but the shoots were abnormal with malformed leaves. Lower concentrations of NAA resulted in poorer survival rate and no roots, with higher concentrations of NAA many roots developed, but these were thickened and their longitudinal growth inhibited. Temperature proved to be of utmost importance for the induction of shoot formation. Thus significantly fewer shoots were formed at the higher temperature (25°C) than at lower temperatures (15 to 20°C). Temperature immediately after initial transfer was of greatest importance: 25°C, during the first week followed by low temperature, produced very few shoots.  相似文献   

13.
In vitro propagation of cashewnut   总被引:3,自引:0,他引:3  
In vitro plant propagation was developed for seedling shoot tips, leaf axils, and cotyledonary nodes of cashew, Anacardium occidentale. Factors affecting multiplication rate included age of explant source, explant type, medium composition, light requirements, and transfer frequency. Cotyledonary nodes produced more buds than other explant types. Nodes had a 90% viability when transferred daily to fresh medium containing activated charcoal for 7 d while exposed to continuous dark. Cultures were then exposed to low light illumination with weekly transfers. The phytohormone composition producing the most buds was 2.32 M kinetin, 9.12 M zeatin and 4.40 M BA. The highest frequency of rooted shoots was obtained by treating shoots with the bacterium, Agrobacterium rhizogenes. Plants also were recovered by induction of roots using auxin treatment on propagated shoots.Abbreviations Kn Kinetin - Zn Zeatin - BA N6-Benzyladenine - 2iP (2-Isopentenyl) adenine - BPA n-Benzyl -9 (2-tetrahydro-pyrany l) adenine - IAA Indole-3-acetic acid - IBA Indole-3-butyric acid - NAA 1-Naphthalene acetic acid - TIBA 2,3,5-Tri-iodo-benzoic acid  相似文献   

14.
Plantlet regeneration via organogenesis was achieved in callus cultures derived form mature leaves, stems and leaves, petioles and roots of young seedling of Psoralea corylifolia on Murashige and Skoog medium supplemented with 2.5–3.0 mg L-1 BA, 1.0 mg L-1 NAA and 3% (w/v) sucrose. The rate of shoot bud regeneration was positively correlated with the concentration of hormones in the nutrient media. Shoot buds regenerated more readily from juvenile explants (seedling source) as compared to the mature explants. Addition of adenine sulphate (5 mg L-1) to the culture medium increased the growth of shoot buds. Optimum responses were obtained in hypocotyl and leaf explants using NAA in combination with BA, the highest rate of shoot bud regeneration being in hypocotyl explants. Rooting was readily achieved on the differentiated shoots on MS basal media without growth regulators. Regenerated plantlets were successfully established in the greenhouse.  相似文献   

15.
Summary An efficient protocol for in vitro propagation of the valuable medicinal plant, Wasabia japonica (Miq.) Matsumura is described through shoot tip proliferation and direct regeneration. Multiple shoots were induced from shoort tips cultured on Murashige and Skoog (MS) semi-solid medium containing various concentrations (0.5–50 μM) of N6-benzyladenine (BA), thidiazuron, kinetin, and zeatin. A comparison was made on shoot multiplication between semi-solid and liquid culture media. Well-developed shoots were obtained using full-strength MS semi-solid medium containing 5.0 μM BA. However, the greatest shoot proliferation was achieved on either full- or half-strength MS liquid media supplemented with 5.0 μM BA for 4 wk (15.3±0.9 and 15.0±0.7 shoots per explant, respectively), and on half-strength MS liquid medium for 6 wk (25.8±1.3 shoots per explant) in culture. In contrast, the maximum number of shoots per explant on full-strength MS semi-solid medium was achieved with either 5.0 μM BA (10.4±0.6 shoots per explant) or 10.0 μM kinetin (10.9±0.8 shoots per explant). Fresh weight of explants and length of shoots derived from full-strength MS liquid medium (1055±77 mg and 34.2±1.0 mm, respectively) were significantly higher than those derived from full-strength MS semisolid medium (437.6±17.3 mg and 15.4±0.7 mm, respectively). Quarter-strength MS liquid medium had no significant difference in shoot proliferation when compared to quarter-strength MS semi-solid medium. Elongated shoots were separated and rooted on half-strength MS semi-solid media fortified with 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA), or indole-3-acetic acid (IAA) ranging from 0.1 to 10.0 μM. Root formation was greatest with IBA when compared with IAA and NAA. One hundred percent of shoots were rooted on half-strength MS medium with 5.0 μM IBA, while vigorous roots were obtained with 10.0 μM IBA. Micropropagated plantlets were successfully established in soil with 95% survival rate after heardening.  相似文献   

16.
Summary A viable protocol has been developed for direct and indirect shoot regeneration of Vernonia cinerea. To establish a stable and high-frequency plant regeneration system, leaf and stem explants were tested with different combinations of α-naphthalene acetic acid (NAA), indole-3-acetic acid (IAA), and benzylaminopurine (BA). Lateral buds on nodal explants grew into shoots within 2 wk of culture in Murashige and Skoog (MS) basal medium supplemented with 20.9 μM BA. Excision and culture of nodal segments from in vitro-raised shoots on fresh medium with the same concentration of BA facilitated development of more than 15 shoots per node. Similarly leaf, nodal, and internodal explants were cultured on MS basal medium supplemented with different concentrations of BA, NAA, and IAA either alone or in combinations for callus induction and organogenesis. Shoot buds and/or roots were regenerated on callus. Shoot buds formed multiple shoots within 4 wk after incubation in induction medium. Adventitious buds and shoots proliferated when callus was cut into pieces and subcultured on MS basal medium containing 20.9 μM BA and 5.3 μM NAA. This combination proved to be the best medium for enhanced adventitious shoot bud multiplication, generating a maximum of 50 shoots in 4 wk. This medium was also used successfully for shoot proliferation in liquid medium. Root formation was observed from callus induced in medium containing 8.05–13.4 μM NAA. Regenerated shoots exhibited flowering and root formation in MS basal medium without any growth regulators. Plantlets established in the field showed 85% survival and exhibited identical morphological characteristics as the donor plant.  相似文献   

17.
Agrobacterium rhizogenes transformed and control roots of the tetraploid potato cv. Bintje were compared. Transformed roots were obtained after infection by A. rhizogenes 15834 or 1855. Both in leaf and stem segments, more roots were formed at the basal side of the segments, indicative for a polarity in root formation. As compared to control roots the transformed roots are characterized by smaller and more densely stained cells, a zone of cell division, and smaller statoliths. These characteristics are correlated with vigorous growth, high branching incidence and diminished geotropism. The plant regeneration procedure according to Ooms et al. [1] was modified. The transformed roots required less 2,4-D than control roots for the induction of shoot-competent calli. The callus and shoot induction phases were reduced from 8 and 6 weeks to 3 and 3 weeks, respectively. Upon induction, 25%, 58% and 61% of the root clones originating from tuber, stem and leaf, respectively, produced shoots, whereas all of the control roots produced shoots. Shoot outgrowth occurred on liquid MS medium in the absence of hormones.Abbreviations Ri-root Agrobacterium rhizogenes transformed root - BAP benzylaminopurine - IAA indoleacetic acid - GA3 gibberellic acid - NAA naphthaleneacetic acid - 2,4-D 2,4 dichlorophenoxyacetic acid  相似文献   

18.
 The regeneration potential of excised aspen (Populus tremula L.) roots cultivated in liquid medium, as affected by plant growth regulators and by the position of the isolated root explant on the main root, was investigated. The effect of various levels of benzyladenine (BA) and thidiazuron (TDZ) on bud regeneration in root explants was studied. TDZ in the medium had a marked effect on bud development as compared with BA, inducing a tenfold increase in the number of buds regenerated from various root explants. TDZ enhanced both root and root-borne shoot biomass production but reduced further shoot development and elongation. The position of the isolated root sections on the main root affected regeneration, the proximal sections further away from the root tip producing the highest number of buds per explant in both BA and TDZ treatments. Buds regenerated in close proximity to the site of lateral roots in BA-treated roots, while in TDZ-treated root sections, the buds formed all over the root regardless of the presence of lateral roots. The buds developed from inner cortical and sub-epidermal cell layers, disrupting the epidermis and the inner layers. Root biomass production and growth was greatly enhanced in well-aerated bioreactor culture in the presence of 4.5×10–2 μM TDZ. A high number of the root-borne shoots could be rooted and converted to plantlets. However, while shoots regenerated in a medium with BA rooted well in a growth regulator-free medium, shoots formed in a medium with TDZ required auxin for rooting. Roots cultured in the presence of ancymidol, a gibberellin biosynthesis inhibitor, regenerated non-hyperhydric bud clusters and hyperhydric shoots. These were separated mechanically, subcultured to growth and rooting medium and transplanted ex vitro resulting in phenotypically true-to-type plantlets. The potential of liquid cultures for aspen shoot biomass production from roots is discussed. Received: 24 January 2000 / Revision received: 6 March 2000 / Accepted: 7 March 2000  相似文献   

19.
20.
Summary Protocols for both axillary bud proliferation and shoot organogenesis of Euphorbia pulchurrima Winter RoseTM were developed using terminal buds and leaf tissues. Greenhouse-grown terminal buds were placed on Murashige-Skoog (MS) basal medium supplemented with various concentrations of either benzlyaminopurine (BA) or thidiazuron (TDZ). Explants produced the greatest number of axillary buds on media containing between 2.2 and 8.8 μM BA. The number of explants that produced axillary buds increased with increasing BA concentration. TDZ at concentrations between 2.3 and 23.0 μM caused hyperhydricity of shoots and were not effective in promoting shoot proliferation. The most calluses and shoots were produced from leaf midvein sections from in vitro grown plants placed on the medium containing 8.8–13.3 μM BA and 17.1 μM indole-3-acetic acid (IAA) for 1 mo. before transferring to the medium containing only BA. Adventitious buds were produced only from red-pigmented callus, and explants that produced callus continued to produce adventitious shoots in the presence of IAA. Five-mo.-old shoots derived from shoot culture or organogenesis rooted readily in artificial soil with or without treatment with indolebutyric acid, and were acclimatized in the greenhouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号