首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factor XIII is activated by thrombin, and this reaction is enhanced by the presence of fibrin(ogen). Using a substrate-based screening assay for factor XIII activity complemented by kinetic analysis of activation peptide cleavage, we show by using thrombin mutants of surface-exposed residues that Arg-178, Arg-180, Asp-183, Glu-229, Arg-233, and Trp-50 of thrombin are necessary for direct activation of factor XIII. These residues define a low specificity site known to be important also for both protein C activation and for inhibition of thrombin by antithrombin. The enhancing effect of fibrinogen occurs as a consequence of its conversion to fibrin and subsequent polymerization. Surface residues of thrombin further involved in high specificity fibrin-enhanced factor XIII activation were identified as His-66, Tyr-71, and Asn-74. These residues represent a distinct interaction site on thrombin (within exosite I) also employed by thrombomodulin in its cofactor-enhanced activation of protein C. In competition experiments, thrombomodulin inhibited fibrin-enhanced factor XIII activation. Based upon these and prior published results, we propose that the polymerization process forms a fibrin cofactor that acts to approximate thrombin and factor XIII bound to separate and complementary domains of fibrinogen. This enables enhanced factor XIII activation to be localized around the fibrin clot. We also conclude that proximity to and competition for cofactor interaction sites primarily directs the fate of thrombin.  相似文献   

2.
1. Four clotting factors, Cf-1(C), Cf-2(C), Cf-1(T) and Cf-2(T) were isolated from Agkistrodon acutus (collected on mainland China and Taiwan) venom by Komori et al. (1987). It was reported that all factors possessed coagulant activity in the conversion of fibrinogen to fibrin, although they showed different chemical properties and antigenicities. 2. Their role in the clot formation system was clarified and compared with that of thrombin. Clotting factors from A. acutus venom released only fibrinopeptide A from the A alpha chain of fibrinogen, while thrombin released fibrinopeptide A and B from the A alpha and B beta chains. 3. Cf-1(C) and Cf-2(T), like thrombin, rapidly activated factor XIII in the presence of calcium ions, whereas Cf-2(C) and Cf-1(T) had little effect on factor XIII. These effects are shown by Cf-1(C) and Cf-2(T) forming a clot that remained insoluble in 8 M urea or 0.44 M monochloroacetic acid, whereas Cf-2(C) and Cf-1(T) formed a soluble clot in these agents.  相似文献   

3.
In the blood coagulation cascade, thrombin cleaves fibrinopeptides A and B from fibrinogen revealing sites for fibrin polymerization that lead to insoluble clot formation. Factor XIII stabilizes this clot by catalyzing the formation of intermolecular cross-links in the fibrin network. Thrombin activates the Factor XIII a(2) dimer by cleaving the Factor XIII activation peptide segment at the Arg(37)-Gly(38) peptide bond. Using a high performance liquid chromatography assay, the kinetic constants K(m), k(cat), and k(cat)/K(m) were determined for thrombin hydrolysis of fibrinogen Aalpha-(7-20), Factor XIII activation peptide-(28-41), and Factor XIII activation peptide-(28-41) with a Val(34) to Leu substitution. This Val to Leu mutation has been correlated with protection from myocardial infarction. In the absence of fibrin, the Factor XIII activation peptide-(28-41) exhibits a 10-fold lower k(cat)/K(m) value than fibrinogen Aalpha-(7-20). With the Factor XIII V34L mutation, decreases in K(m) and increases in k(cat) produce a 6-fold increase in k(cat)/K(m) relative to the wild-type Factor XIII sequence. A review of the x-ray crystal structures of known substrates and inhibitors of thrombin leads to a hypothesis that the new Leu generates a peptide with more extensive interactions with the surface of thrombin. As a result, the Factor XIII V34L is proposed to be susceptible to wasteful conversion of zymogen to activated enzyme. Premature depletion may provide cardioprotective effects.  相似文献   

4.
Solutions of plasminogen-free human fibrinogen alone or (1) treated with sodium p-chloromercuribenzoate in order to inactivate factor XIII, or (2) enriched with factor XIII, cysteine and CaC12, were clotted with plasmin-free human thrombin and incubated under sterile conditions. The clots dissolved gradually within 2 days (fibrin from sodium p-chloromercuribenzoate-treated fibrinogen) to 15 days (fibrin from factor XIII-enriched fibrinogen). This proteolytic process was not affected by soybean trypsin inhibitor but was completely inhibited by hirudin. Gel electrophoresis of the thrombin digests indicated the formation of bands equivalent to bands X, Y, D and E of plasmin digests of fibrinogen. The two latter bands, whose identity was confirmed by immunoelectrophoresis, appeared at a more advanced stage of proteolysis than the corresponding bands of plasmin digests. The number of isopeptide bonds present did not appear to affect the rate of release of acid-soluble peptides. Gel electrophoresis and the rate of release of acid-soluble peptides indicated that fewer bonds are hydrolysed by thrombin at the time of the complete solubilization of the clot than are split by plasmin when fibrinogen becomes unclottable by thrombin.  相似文献   

5.
Factor XIII zymogen activation is a complex series of events that involve fibrinogen acting in several different roles. This report focuses on the role of fibrinogen as a cofactor in factor XIII activation by thrombin. We demonstrate that fibrinogen has two distinct activities that lead to an increased rate of factor XIII activation. First, the thrombin proteolytic activity is increased by fibrin. The cleavage rates of both a small chromogenic substrate and the factor XIII activation peptide are increased in the presence of either the major fibrin isoform, gammaA/gammaA fibrin, or a minor variant form, gammaA/gamma' fibrin. This enhancement of thrombin activity by fibrin is independent of fibrin polymerization and requires only cleavage of the fibrinopeptides. Subsequently, gammaA/gamma' fibrinogen accelerates plasma factor XIII activation by a non-proteolytic mechanism. This increased rate of activation results in a slightly more rapid cross-linking of fibrin gammaA and gamma' chains and a significantly more rapid cross-linking of fibrin alpha chain multimers. Together, these results show that although both forms of fibrin increase the rate of activation peptide cleavage by thrombin, gammaA/gamma' fibrinogen also increases the rate of factor XIII activation in a non-proteolytic manner. A revised model of factor XIII activation is presented below.  相似文献   

6.
Covalent cross-linking of fibrin chains is required for stable blood clot formation, which is catalyzed by coagulation factor XIII (FXIII), a proenzyme of plasma transglutaminase consisting of catalytic A (FXIII-A) and non-catalytic B subunits (FXIII-B). Herein, we demonstrate that FXIII-B accelerates fibrin cross-linking. Depletion of FXIII-B from normal plasma supplemented with a physiological level of recombinant FXIII-A resulted in delayed fibrin cross-linking, reduced incorporation of FXIII-A into fibrin clots, and impaired activation peptide cleavage by thrombin; the addition of recombinant FXIII-B restored normal fibrin cross-linking, FXIII-A incorporation into fibrin clots, and activation peptide cleavage by thrombin. Immunoprecipitation with an anti-fibrinogen antibody revealed an interaction between the FXIII heterotetramer and fibrinogen mediated by FXIII-B and not FXIII-A. FXIII-B probably binds the γ-chain of fibrinogen with its D-domain, which is near the fibrin polymerization pockets, and dissociates from fibrin during or after cross-linking between γ-chains. Thus, FXIII-B plays important roles in the formation of a ternary complex between proenzyme FXIII, prosubstrate fibrinogen, and activator thrombin. Accordingly, congenital or acquired FXIII-B deficiency may result in increased bleeding tendency through impaired fibrin stabilization due to decreased FXIII-A activation by thrombin and secondary FXIII-A deficiency arising from enhanced circulatory clearance.  相似文献   

7.
The effect of plasmin-derived fibrin(ogen) degradation products on alpha-thrombin cleavage of plasma Factor XIII was studied to identify the fibrin polymer structure that promotes Factor XIIIa formation. Fibrin polymers derived from fibrinogen and Fragment X enhanced the rate of thrombin cleavage of plasma Factor XIII in plasma or buffered solutions. The concentrations of fibrinogen and Fragment X that promoted half-maximal rates of Factor XIIIa formation were 5 and 40 micrograms/ml, respectively. Fragments Y, D, E, D-dimer, and photooxidized fibrinogen did not enhance thrombin cleavage of Factor XIII. Although purified Fragment D1 inhibited fibrin gelation, the soluble protofibrils promoted thrombin activation of Factor XIII. Noncrosslinked fibrin fibers failed to enhance thrombin cleavage of Factor XIII. In conclusion, soluble fibrin oligomers function to promote thrombin cleavage of plasma Factor XIII during blood clotting.  相似文献   

8.
Thrombin cleaves fibrinopeptides A and B from fibrinogen leading to the formation of a fibrin network that is later covalently crosslinked by Factor XIII (FXIII). Thrombin helps activate FXIII by catalyzing hydrolysis of the FXIII activation peptides (AP). In the current work, the role of exosites in the ternary thrombin-FXIII-fibrin(ogen) complex was further explored. Hydrolysis studies indicate that thrombin predominantly utilizes its active site region to bind extended Factor XIII AP (FXIII AP 33-64 and 28-56) leaving the anion-binding exosites for fibrin(ogen) binding. The presence of fibrin-I leads to improvements in the K(m) for hydrolysis of FXIII AP (28-41), whereas peptides based on the cardioprotective FXIII V34L sequence exhibit less reliance on this cofactor. Surface plasmon resonance measurements reveal that d-Phe-Pro-Arg-chloromethylketone-thrombin binds to fibrinogen faster than to FXIII a(2) and dissociates from fibrinogen more slowly than from FXIII a(2). This system of thrombin exosite interactions with differing affinities promotes efficient clot formation.  相似文献   

9.
Purified platelet Factor XIII was radioiodinated and then partially degraded by thrombin or trypsin, and a fibrin-binding fragment was identified by autoradiography and immunoblotting following separation by SDS/polyacrylamide-gel electrophoresis. Limited proteolysis of 125I-Factor XIII by thrombin or trypsin produced an 125I-51 kDa fragment and an unlabelled 19 kDa fragment. The 51 kDa fragment was purified by h.p.l.c. on a TSK-125 gel-filtration column. Partial amino acid sequence analysis of the 51 kDa fragment indicated that it was similar in sequence to the Gly38-Lys513 segment in placental Factor XIII a-chain. More than 70% of the 51 kDa fragment bound to fibrin, whereas the 19 kDa fragment did not bind. The active site was localized to the 51 kDa fragment since this fragment expressed transglutaminase activity, cross-linked fibrin and fibrinogen and incorporated iodo[14C]acetamide into the active-site cysteine residue. Isolation of a fibrin-binding fragment expressing transglutaminase activity demonstrates that each a-chain of the dimeric Factor XIIIa could function independently to cross-link fibrin. The fibrin-binding site could play an important role in localizing Factor XIIIa to the fibrin clot.  相似文献   

10.
Possible interaction of alpha-2-antiplasmin with fibrinogen, fibrin and their fragments independent of factor XIII as well as the inhibitor effect on the Glu-plasminogen activation by tissue activator were studied. It was shown that alpha-2-antiplasmin is adsorbed on desAA- and desAABBfibrin films (Kd 69.0 +/- 1.0 nM 68.6 +/- 5.3 nM, respectively). Glu-Plasminogen has no effect on the inhibitor binding with desAABBfibrin. Alpha-2-antiplasmin shows strong affinity for fibrin D-dimer (Kd 65.0 +/- 4.0 nM) and D-fragment of fibrinogen (Kd 119.0 +/- 21.0 nM), but it does not interact with E-fragment. The inhibitor inside the fibrin clot decreases 10 times the activation rate of Glu-plasminogen by the tissue activator both is the presence and without factor XIII at physiological ratio of Glu-plasminogen, tissue activator, fibrin and alpha-2-antiplasmin. Thus we have shown that fibrinogen/fibrin binds alpha-2-antiplasmin independent of the factor XIII. Binding sites of the inhibitor are localized in D-fragment of fibrinogen and/or fibrin D-dimer. Alpha-2-antiplasmin inhibits the Glu-plasminogen activation by tissue activator on fibrin.  相似文献   

11.
Kinetic and thermodynamic studies are presented showing that the cofactor activity of fibrin I (polymerized des-A fibrinogen) in the alpha-thrombin-catalyzed proteolysis of activation peptide (AP) from plasma factor XIII can be attributed to formation of a fibrin I-plasma factor XIII complex (Kd = 65 nM), which is processed by alpha-thrombin more efficiently (kcat/Km = 1.2 x 10(7) M-1 s-1) than free, uncomplexed plasma factor XIII (kcat/Km = 1.4 x 10(5) M-1 s-1). The increase in the specificity constant (kcat/Km) is shown to be largely due to an increase in the apparent affinity of alpha-thrombin for the complex of plasma factor XIII and fibrin I, as reflected by the 30-fold decrease in the Michaelis constant observed for fibrin I bound plasma factor XIII relative to that for uncomplexed plasma factor XIII. Analysis of the initial rates of alpha-thrombin-catalyzed hydrolysis of fibrinopeptide B (FPB) from fibrin I polymer in the presence of plasma factor XIII indicated that alpha-thrombin bound to fibrin I in the ternary complex of alpha-thrombin, plasma factor XIII, and fibrin I polymer is competent to catalyze cleavage of both FPB from fibrin I and AP from plasma factor XIII. This observation is consistent with the view that alpha-thrombin within the ternary complex is anchored to fibrin I polymer through a binding site distinct from the active site (an exosite) and that the active site is alternatively complexed with the AP moiety of plasma factor XIII or the FPB moiety of fibrin I. This conclusion is supported by the observation that a 12-residue peptide, which binds to an exosite of alpha-thrombin and blocks the interaction of alpha-thrombin with fibrinogen and fibrin, competitively inhibits alpha-thrombin-catalyzed release of both FPB and AP from the fibrin I-plasma factor XIII complex.  相似文献   

12.
Fibrin clot structure is highly dependent on factor XIII activity. Activated FXIII catalyzes the formation of the peptide bonds between the gamma and alpha chains in noncovalently bound fibrin polymers and incorporates various adhesive and antifibrinolytic proteins into the final fibrin clot. In the absence of activated FXIII, clots are unstable and susceptible to fibrinolysis. Several studies have examined the effects of FXIII polymorphisms on final fibrin clot structure and clinical thrombotic risk. The Val34Leu FXIII polymorphism is associated with increased activation by thrombin. In the presence of saturating thrombin concentrations, however, FXIIIa specific enzyme activity is not affected by genetic polymorphisms. Fibrin clots formed in the presence of the FXIII 34Leu polymorphisms do tend to be thinner and less porous, however. The effects of prothrombin concentrations on clot structure have suggested that thinner clots are more resistant to fibrinolysis and associated with increased thrombotic risk. Most clinical studies of 34Leu FXIII carriers, however, have demonstrated a lower incidence of both venous and arterial thrombosis in carriers of the mutant allele compared to Val/Val carriers. One recent study has suggested that the interactions between FXIII phenotype and plasma fibrinogen concentrations significantly influence clinical thrombotic risk.  相似文献   

13.
Steady-state kinetic parameters were compared for the action of alpha- and gamma-thrombin on the physiologically important thrombin substrates fibrinogen and factor XIII at 37 degrees C, pH 7.4, and 0.14 M NaCl. gamma-Thrombin, an alpha-thrombin derivative proteolytically cleaved at R-B73 and K-B154, was observed to catalyze the release of fibrinopeptide A (FPA) from fibrinogen with a specificity constant (kcat/Km) of 5 X 10(3) M-1 s-1. This value was approximately 2400-fold lower than the specificity constant for the corresponding alpha-thrombin-catalyzed reaction. The low specificity constant was attributed to an increase in Km and a decrease in kcat for gamma-thrombin-catalyzed release of FPA from fibrinogen. Conversion of alpha-thrombin to gamma-thrombin also resulted in an approximately 800-fold reduction in the specificity constant for thrombin-catalyzed release of fibrinopeptide B (FPB) from fibrin I, as well as a loss in discriminatory power. Whereas alpha-thrombin preferentially released FPA from intact fibrinogen, gamma-thrombin released FPA and FPB from intact fibrinogen at similar rates. In contrast to the large difference in specificity constants observed for alpha- and gamma-thrombin catalysis with fibrin(ogen) as substrate, the specificity constant (2.6 X 10(4) M-1 s-1) observed for gamma-thrombin-catalyzed release of activation peptide from factor XIII was only 5-fold lower than the corresponding value for the alpha-thrombin-catalyzed reaction. Additionally, the promotion of factor XIII activation by fibrin characteristic of the alpha-thrombin-catalyzed reaction did not occur in the gamma-thrombin-catalyzed reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Thrombosis is a leading cause of morbidity and mortality throughout the world. Thrombolytic agents are important for both the prevention and treatment of thrombosis. Fibrin clot and turbidity assays revealed that it was able to inhibit the formation of fibrin clot. Chlorogenic acid degraded blood clot and inhibited the enzymatic activity of procoagulant proteases, thrombin, activated factor X (FXa), and activated factor XIII (FXIIIa). Chlorogenic acid was found to delay activated partial thromboplastin time, prothrombin time, and thrombin time. PFA‐100 assays showed that it prolonged the closure time of citrated whole human blood. It demonstrated the antithrombotic effect in collagen and epinephrine‐induced acute thromboembolism mice model. These antithrombotic profiles together with its anticoagulant and platelet disaggregation properties, and lack of toxicity to NIH‐3T3 and 3T3‐L1 cells, make it a potential agent for thrombotic treatment and prevention.  相似文献   

15.
An integrated study of fibrinogen during blood coagulation.   总被引:7,自引:0,他引:7  
The rate of conversion of fibrinogen (Fg) to the insoluble product fibrin (Fn) is a key factor in hemostasis. We have developed methods to quantitate fibrinopeptides (FPs) and soluble and insoluble Fg/Fn products during the tissue factor induced clotting of whole blood. Significant FPA generation (>50%) occurs prior to visible clotting (4 +/- 0.2 min) coincident with factor XIII activation. At this time Fg is mostly in solution along with high molecular weight cross-linked products. Cross-linking of gamma-chains is virtually complete (5 min) prior to the release of FPB, a process that does not occur until after clot formation. FPB is detected still attached to the beta-chain throughout the time course demonstrating release of only low levels of FPB from the clot. After release of FPB a carboxypeptidase-B-like enzyme removes the carboxyl-terminal arginine resulting exclusively in des-Arg FPB by the 20-min time point. This process is inhibited by epsilon-aminocaproic acid. These results demonstrate that transglutaminase and carboxypeptidase enzymes are activated simultaneously with Fn formation. The initial clot is a composite of Fn I and Fg already displaying gamma-gamma cross-linking prior to the formation of Fn II with Bbeta-chain remaining mostly intact followed by the selective degradation of FPB to des-Arg FPB.  相似文献   

16.
The thrombin-fibrinogen interaction   总被引:2,自引:0,他引:2  
The thrombin-catalyzed conversion of fibrinogen (F) to fibrin consists of three reversible steps, with thrombin (T) being involved in only the first step which is a limited proteolysis to release fibrinopeptides (FpA and FpB) from fibrinogen to produce fibrin monomer. In the second step, fibrin monomers form intermediate polymers through noncovalent interactions. In the third step, the intermediate polymers aggregate to form the fibrin clot. The molecular mechanisms of the first two steps are elucidated.  相似文献   

17.
Incorporation of thrombospondin into fibrin clots   总被引:9,自引:0,他引:9  
Thrombospondin is a major platelet glycoprotein which is released from platelets during blood coagulation. We examined the interaction of thrombospondin with polymerizing fibrin. Thrombospondin, purified from human platelets and labeled with 125I, became incorporated into clots formed from both plasma and purified fibrinogen. Plasma clots contained somewhat less thrombospondin than clots formed from equivalent concentrations of fibrinogen. In plasma clots and fibrin clots formed in the presence of factor XIII, thrombospondin was cross-linked in the clot; thrombospondin in the supernatant remained largely monomeric. Cross-linking of thrombospondin by factor XIII, however, only slightly increased the amount of thrombospondin which was incorporated into the clot. In contrast, incorporation of 125I-fibronectin into clots was dependent upon cross-linking. Most of the incorporation of 125I-thrombospondin occurred during fibrin polymerization as judged by parallel studies of the incorporation of 125I-fibrinogen. The amount of thrombospondin incorporated into a clot was directly related to thrombospondin concentration and was only weakly dependent on fibrinogen concentration. Incorporation was not saturated at thrombospondin:fibrin (mol/mol) ratios as high as 2/1. Thrombospondin, however, modified the final structure of fibrin clots in a concentration-dependent manner as monitored by opacity. When tryptic digests of 125I-thrombospondin were studied, the 270-kilodalton core became incorporated into fibrin whereas the 30-kilodalton heparin binding fragment was excluded. These results indicate that thrombospondin specifically co-polymerizes with fibrin during blood coagulation and may be an important modulator of clot structure.  相似文献   

18.
Gel formation by fibrin oligomers without addition of monomers   总被引:1,自引:0,他引:1  
P A Janmey  J D Ferry 《Biopolymers》1986,25(7):1337-1344
Soluble fibrin oligomers were formed by reacting fibrinogen with thrombin under fine clotting conditions where the action of thrombin is the rate-determining step for polymerization, and by inhibiting the reaction shortly before gelation. Oligomeric fibrin was separated from unreacted fibrinogen and small oligomers by gel permeation chromatography. Electron microscopy revealed that the largest soluble fibrin oligomers resemble the protofibrils present in fine clots, but are somewhat shorter and entirely lack the twisted, trifunctional junctions that contribute to the elastic properties of fine clots. When thrombin was added to the soluble fibrin oligomers, polymerization resumed and clots were formed at a more rapid rate than from fibrinogen at the same concentration and resulted in a less-opaque clot under coarse clotting conditions. The results confirm a prediction of a theory for the polymerization of fibrin and provide additional evidence that the final state of a coarse fibrin clot depends on the mobility of protofibrils during its formation.  相似文献   

19.
The first step in the activation of blood coagulation factor XIII (FXIII) is the proteolytic cleavage of the potentially active A subunit (FXIII-A) by thrombin at Arg37-Gly38. Both fibrin formation and FXIII-A Val34Leu polymorphism influence the rate of proteolytic activation of purified factor XIII, however their relative importance and interaction in determining the time of onset and the rate of FXIII activation in whole plasma have not yet been explored. In the present study it was shown that in plasma, fibrin formation preceded the truncation of FXIII-A by thrombin, the activation process took place exclusively on the surface of newly formed fibrin and activated FXIII remained associated with the fibrin clot. The time of fibrin formation closely correlated with the time of FXIII activation, while there was no significant relationship between the time of FXIII activation and FXIII-A Val34Leu genotype. However, in the case of Leu34 variant the lag phase between fibrin formation and FXIII-A truncation was significantly shorter than in the case of Val34 variant. The results suggest that in whole plasma the onset of FXIII activation is determined by fibrin formation, while the rate of activation is modulated by Val34Leu polymorphism.  相似文献   

20.
R Procyk  R G King 《Biopolymers》1990,29(3):559-565
The elastic modulus (G') of factor XIIIa induced fibrinogen gels was found to be substantially lower than the G' of fibrin gels that were formed by clotting fibrinogen with thrombin. The addition of fibronectin and/or the reducing reagent dithiothreitol (DTT) to the factor XIIIa coagulation mixture led to the formation of a weaker gel structure, while the rigidity of thrombin induced clots was not appreciably affected by the inclusion of the DTT but increased somewhat in the presence of fibronectin. The reasons for the differing clot rigidities are discussed in terms of biochemical mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号