首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lipoxygenases in plants have been implicated in the activation of defense responses against injury/infection. Pathogen-derived polyunsaturated fatty acids, such as arachidonic acid, eicosapentaenoic acid and their metabolites have been shown to elicit defense responses against pathogen infection in plants. However, not much is known about the role of host-derived fatty acids and their metabolites in plant defense responses. In this study, isolation and characterisation of endogenous lipoxygenase metabolites formed in potato tubers in response to injury/infection was undertaken. While 9-hydroperoxyoctadecadienoic acid (9-HPODE), derived from octadecdienoic acid (linoleic acid) is the major lipoxygenase product formed in control potato tubers, 9-hydroperoxyoctadecatrienoic acid (9-HPOTrE), derived from octadecatrienoic acid (alpha-linolenic acid) is the major lipoxygenase product formed in potato tubers in response to injury or infection with Rhizoctonia bataticola. As a result, the relative ratio of 9-HPODE to 9-HPOTrE showed a shift from 4:1 in control to 1:2 and 1:4.5 in injured and infected potato tubers respectively. From this study, it is proposed that lipoxygenase metabolites of octadecadienoic acid may be involved in physiological responses under control conditions, while octadecatrienoic acid metabolites are mediating the defense responses. This forms the first report on the differential formation of endogenous lipoxygenase products in potato tubers under control and stress conditions.  相似文献   

2.
Evidence for the formation of a positional isomer of leukotriene (LT) C3 (8,9-LTC3) from dihomo-gamma-linolenic acid has been published (Hammarstr?m, S. J. Biol. Chem. 256, 7712-7714, 1981). This report describes the conversion of dihomo-gamma-linolenic acid to a postulated intermediate in former reaction, 8,9-LTA3, by purified lipoxygenase from potato tubers. 8(S)-Hydroperoxyeicosatrienoic acid (8(S)-HPETrE) was the most abundant dioxygenation product formed followed by 11-, 15-, and 12-HPETrEs (in decreasing order of abundance). In addition, 8(S),15(S)- plus 8(S), 15(R)-dihydroperoxyeicosatetraenoic acid (DiHPE-TrE) (EZE), and 8(S),15(S)- plus 8(S),15(R)-dihydroxy-eicosatetraenoic acid (DiHETrE) (EEE) were generated. Under anaerobic conditions only the latter two isomers of 8,15-DiHETrE (EEE) were obtained from 8-HPETrE. The results suggest that 8,9-LTA3 is synthesized by the sequential action of 8- and 11-lipoxygenase activities associated with the potato enzyme.  相似文献   

3.
Isolation and characterization of 5-lipoxygenase from tulip bulbs   总被引:4,自引:0,他引:4  
An unique membrane bound lipoxygenase was isolated and purified from purple star tulip bulbs with a specific activity of 5.2 mu moles O2 consumed.min-1.mg-1 protein. The purified tulip enzyme exhibits regiospecificity for O2 insertion at C-5 of the arachidonic acid molecule. Identification of the reaction product was confirmed as 5-hydroperoxyeicosatetraenoic acid by analytical criteria which included: cochromatography with the authentic compound, as well as mass spectral and 1H-NMR analysis. Thus, the enzyme from tulip bulbs appears to be different from the cytosolic lipoxygenase from potato tubers, which exhibits non-regiospecificity in terms of O2 incorporation. However, the purified tulip lipoxygenase showed a strong immunological crossreactivity with antiserum raised against the purified potato lipoxygenase, indicating close immunological relationship with the other plant lipoxygenases.  相似文献   

4.
The dioxygenation of linoleyl alcohol (LAL) by potato tuber lipoxygenase leads to formation of two positional isomeric products--9- and 13-hydroperoxyoctadecadien-1-ols (Butovich, I. A., Luk'yanova, S. M., and Reddy, C. C. (1998) Biochem. Biophys. Res. Commun. 249, 344-349). In the present study, we examined the stereospecificity and double-bond conformation of primary dioxygenation products of LAL catalyzed by potato lipoxygenase. In contrast to the product profiles of linoleic acid oxidation by potato lipoxygenase, oxidation of LAL led to all possible positional (9- and 13-), stereo, and geometrical (cis,trans and all-trans) isomers in equimolar mixtures at 25 degrees C. The reaction appears to proceed through an enzyme-catalyzed formation of a pentadiene carbon-centered radical followed by resonance stabilization of the radical and molecular oxygen insertion in an enzyme-dependent as well as an enzyme-independent pathway. A strict positional, stereo, and geometrical specificity of the dioxygenation products of LAL oxidation appears to be maintained when the reaction occurs at the active site of the enzyme. However, when the pentadiene carbon-centered radical of LAL is dissociated from the active site of the enzyme, it appears to be nonenzymatically transformed into a mixture of all possible positional and geometrical stereoisomers of primary dioxygenation products. The latter pathway was effectively blocked by the free radical scavenger 4-hydroxy-TEMPO, which substantially reduced the production of all-trans hydroperoxyoctadecadienols. In the presence of the scavenger, 9(S)-hydroperoxy-10E,12Z-octadecadien-1-ol was the predominant LAL oxidation product, representing approximately 80% of the total conjugated dienes, with 13(S)-hydroxy-9Z,11E-octadecadien-1-ol the expected product of reverse orientation of the substrate at the active site, accounting for approximately 10%. A similar pattern in oxidation of LAL was observed when the reactions were carried out at 0 degrees C.  相似文献   

5.
A product of lipoxygenase (LOX) oxidation of docosahexaenoic acid (DHA), 10,17-dihydro(pero)xydocosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid [10,17(S)-diH(P)DHA] was obtained through various reaction pathways that involved DHA, 17(S)-hydro(pero)xydocosahexa-4Z,7Z,11Z,13Z,15E,19Z-enoic acid [17(S)-H(P)DHA], soybean lipoxygenase (sLOX), and potato tuber lipoxygenase (ptLOX) in various combinations. The structure of the product was confirmed by HPLC, ultraviolet (UV) light spectrometry, GC-MS, tandem MS, and NMR spectroscopy. It has been found that 10,17(S)-diH(P)DHA formed by sLOX through direct oxidation of either DHA or 17(S)-H(P)DHA was apparently identical to the product of ptLOX oxidation of the latter. The sLOX- and ptLOX-derived samples of 10,17-diHDHAs coeluted under the conditions of normal, reverse, and chiral phase HPLC analyses, displayed identical UV absorption spectra with maxima at 260, 270, and 280 nm, and had similar one-dimensional and two-dimensional proton NMR spectra. Analysis of their NMR spectra led to the conclusion that 10,17-diHDHA formed by sLOX had solely 11E,13Z,15E configuration of the conjugated triene fragment, which was identical to the previously published structure of its ptLOX-derived counterpart. Based on the cis,trans geometry of the reaction products, the conclusion is made that in the tested conditions sLOX catalyzed direct double dioxygenation of DHA. Compared with the previously described two-enzyme method that involved sLOX and ptLOX, the current simplified one-enzyme procedure uses only sLOX as the catalyst of both dioxygenation steps.  相似文献   

6.
A lipoxygenase (EC 1.13.1.13) was partially purified from potato tubers and was shown to differ from previously characterized soya-bean lipoxygenases in the positional specificity and pH characteristics of the oxygenation reaction. The potato enzyme converted linoleic acid almost exclusively (95%) into 9-d-hydroperoxyoctadeca-trans-10,cis-12-dienoic acid. The 13-hydroperoxy isomer was only a minor product (5%). Linolenic acid was an equally effective substrate, which was also oxygenated specifically at the 9-position. The enzyme had a pH optimum at 5.5-6.0 and was inactive at pH9.0. A half-maximal velocity was obtained at a linoleic acid concentration of 0.1mm. No inhibition was observed with EDTA (1mm) and cyanide (1mm) or with p-chloromercuribenzoate (0.2mm). Haemoproteins were not involved in the lipoxygenase activity. The molecular weight of the enzyme was estimated from gel filtration to be approx. 10(5). Preliminary evidence suggested that the enzyme oxygenated the n-10 position of fatty acids containing a penta(n-3, n-6)diene structure.  相似文献   

7.
The vascular actions of several prostanoids and arachidonate lipoxygenase products were investigated on the gastric circulation of rat and rabbit in vitro perfused with Krebs' solution. Under resting conditions, prostacyclin and PGE2 produced small decreases in perfusion pressure with prostacyclin being the more potent. During vasoconstriction induced by infusion of noradrenaline, vasopressin or angiotensin II, prostacyclin was 20-40 times as active as PGE2 as a gastric vasodilator in rat or rabbit stomach. PGF2 alpha was a less potent vasoconstrictor than noradrenaline, while the epoxy-methano endoperoxide analogue produced a long-lasting vasoconstriction. The putative metabolite, 6-oxo-PGE1 was less active than prostacyclin as a vasodilator, having comparable activity to PGE1, whereas 6-oxo-PGF1 alpha had very little activity. The endoperoxide, PGH2 reduced perfusion pressure, this effect being inhibited by concurrent infusion of 15-HPETE. The vasodilation induced by arachidonic acid was likewise reduced by 15-HPETE, and abolished by indomethacin infusion. The arachidonate lipoxygenase hydroperoxides were vasodilator in the gastric circulation, the rank order of potency being 12-HPETE greater than 11-HPETE greater than 5-HPETE greater than 15-HPETE in both rat and rabbit stomach. It is possible that such vasoactive lipoxygenase products, may play modulator roles in the gastric mucosa.  相似文献   

8.
The substrate specificity of potato lipoxygenase was examined using a partially purified enzyme preparation from tubers of a potato variety with low lipolytic acyl hydrolase activity. Potato lipoxygenase is fully active only on free linoleic acid or linolenic acid, and only acts directly on more complex glyceride moieties in the absence of any significant endogenous lipolytic acyl hydrolase activity.  相似文献   

9.
The purified lipoxygenase of rabbit reticulocytes converts arachidonic acid at 0 degrees C to 15-hydroperoxyeicosatetraenoic acid (15-HPETE) and to 12-hydroperoxyeicosatetraenoic acid (12-HPETE) via reactions which involve hydrogen abstraction at C-13 and C-10, respectively. At 37 degrees C the enzyme converts arachidonic acid to additional products which were identified as 13-hydroxy-14,15-epoxy-5,8,11-eicosatrienoic acid, 8,15-dihydroperoxy-5,9,11,13- and 5,15-dihydroperoxy-6, 6,8,11,13-eicosatetraenoic acids (8,15-diHPETE and 5,15-HPETE, respectively) and diastereoisomers of 8,15-dihydroxy-5,9,11,13-eicosatetraenoic acid (8,15-diHPETEs). The 8,15- and 5,15-diHPETEs were formed by double lipoxygenation since each incorporated 2 molecules of 18O2 and since their synthesis from 15-HPETE was blocked under anaerobic conditions. The 8,15-diHETEs each incorporated 18O from 18O2 at C-15 and were found to arise from nonenzymatic hydrolysis of an epoxytriene which was identified as 14,15-leukotriene A4 by trapping in acidic methanol. This compound was a major product of 15-HPETE in anaerobic incubations. The conversion of 15-HPETE to 14,15-leukotriene A4 was inhibited by the lipoxygenase inhibitors nordihydroguairetic acid and 5,8,11,14-eicosatetraynoic acid. The 14,15-leukotriene A4 synthase and 15-lipoxygenase activities were inhibited by 5,8,11,14-eicosatetraynoic acid in a similar time-dependent manner. The results support a mechanism whereby 14,15-leukotriene A4 is synthesized from 15-HPETE by a further enzymatic step carried out by the reticulocyte 15-lipoxygenase via hydrogen abstraction at C-10 and a redox cycle of the non-heme iron atom of the enzyme.  相似文献   

10.
[1-14C]Arachidonic acid was incubated with homogenates of the fungus, Saprolegnia parasitica. The products consisted of comparable amounts of two epoxy alcohols, 15-Ls-hydroxy-11,12-epoxy-5cis,8cis,13trans- eicosatrienoic acid and 15-hydroxy-13,14-epoxy-5cis,8cis,11cis-eicosatrienoic acid. Results of incubations carried out in the presence of nordihydroguaiaretic acid, 5,8,11,14-eicosatetraynoic acid, p-hydroxymercuribenzoate as well as glutathione peroxidase plus reduced glutathione demonstrated that transformation of arachidonic acid into epoxy alcohols occurred with the formation of 15-Ls-hydroperoxy-5cis,8cis,11cis,13trans- eicosatetraenoic acid (15-HPETE) as an intermediate. The pathway involved a lipoxygenase catalyzing the oxygenation of arachidonic acid at the 15L position to produce 15-HPETE, and a hydroperoxide isomerase activity which catalyzed conversion of 15-HPETE into the two epoxy alcohols. Studies with 15-[18O2]HPETE demonstrated that both oxygens of 15-HPETE were retained in the epoxy alcohols. Furthermore, experiments with mixtures of 15-[18O2]-and 15-[16O2]HPETE showed that conversion of 15-HPETE into epoxy alcohols occurred by an intramolecular transfer of hydroperoxide oxygen.  相似文献   

11.
The role of arachidonic acid metabolites in norepinephrine (NE)-induced N-acetyltransferase (NAT) activity and melatonin release was examined from 6 h-incubations of rat pineal glands. A cyclooxygenase inhibitor, indomethacin (5 x 10(-8) - 5 x 10(-6) M) was ineffective on melatonin release, in the presence of absence of NE (5 x 10(-6) M) while a lipoxygenase inhibitor, nordihydroguaiaretic acid (5 x 10(-7) -5 x 10(-5) M) had an inhibitory effect. Among the lipoxygenase metabolites, 12-hydroperoxyeicosatetraenoic acid (12-HPETE) and 15-HPETE stimulated both NAT activity and melatonin release in a dose-dependent manner, with a maximal effect occurring at 10(-6) M, while 5-HPETE or hydroxy derivatives of these compounds (12-HETE, 15-HETE and 5-HETE) were ineffective. These results indicate that 12-HPETE and 15-HPETE can be involved in NE-induced melatonin release.  相似文献   

12.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

13.
Three carbonyl compounds derived from arachidonic acid have recently been characterized in human platelets, namely, 12-ketoeicosatetraenoic acid and two isomeric 12-oxododecatrienoic acids. The conditions for the synthesis of these compounds and for the synthesis of analogous products from soybean lipoxygenase, i.e., 15-ketoeicosatetraenoic acid and 15-oxopentadecatetraenoic acids, were compared with regard to the role of oxygen and fatty acid availability, and heme catalysis. Using platelet homogenates or soybean lipoxygenase and arachidonic acid as a substrate, it was found that the establishment of anaerobic conditions during the incubation was mandatory only for the synthesis of 15-oxopentadecatetraenoic acids. Anaerobic conditions, however, greatly increased the formation of 15-ketoeicosatetraenoic acid and, to a lesser extent, of 12-oxododecatrienoic acids. On the other hand, 12-hydroperoxyeicosatetraenoic acid (12-HPETE) was transformed into 12-ketoeicosatetraenoic acid and 12-oxododecatrienoic acids by platelet homogenates or soybean lipoxygenase. This transformation was increased when the incubation was performed in anaerobic conditions and in the presence of a fatty acid substrate of the enzyme. These data suggest that oxygen deprivation and excess fatty acid could play a stimulatory role in the synthesis of 12-oxo compounds by platelets. Finally, we have compared the heme-catalyzed generation of the 12-oxo and 15-oxo derivatives from their hydroperoxide precursors: whereas 12-oxododecatrienoic acids and 12-ketoeicosatetraenoic acid were formed in the proportion of 8.5: 1.5 from 12-HPETE incubated with hematin (150 nM), 15-ketoeicosatetraenoic acid was the only carbonyl compound generated from 15-HPETE in the same conditions, emphasizing the unique reactivity of the 12-HPETE.  相似文献   

14.
Previous studies in a line of rat basophilic leukemia (RBL 1) cells have indicated that the slow reacting substance (SRS) made during stimulation with the divalent cation ionophore, A23187, is derived from arachidonic acid (AA). In the present report, various inhibitors of AA metabolism were compared with regard to their effects on SRS formation and incorporation of radioactivity from [1-14C]-AA into known metabolites of the lipoxygenase and cyclooxygenase pathways. An apparently close parallel between lipoxygenase product formation and SRS synthesis is demonstrated. In addition, exogenous 5-hydroperoxy-eicosatetraenoic acid (5-HPETE) has been shown to markedly enhance SRS synthesis, even when A23187 is absent. The data provide very strong evidence that SRS is produced through the lipoxygenase pathway.  相似文献   

15.
P Borgeat  S Pilote 《Prostaglandins》1988,35(5):723-731
The 5S, 12S-dihydroxy-6,8,10,14-(E,Z,E,Z,)-eicosatetraenoic acid, a product of double dioxygenation of arachidonic acid by lipoxygenases, undergoes severe decomposition during gas chromatography-mass spectrometric (GC-MS) analysis of the trimethylsilyl ether methyl ester derivative. The decomposition product was studied by GC-MS and identified as a cyclohexadiene derivative of the parent compound formed by ring closure at C6 and C11. Under identical GC conditions, two stereoisomers, i.e. 5S,12R-dihydroxy-6,8,10,14-(Z,E,E,Z)-eicosatetraenoic acid (leukotriene B4), and 6-trans-leukotriene B4 showed excellent chromatographic properties. These data indicated that the 5,12-dihydroxy derivative of arachidonic acid carrying the trans-cis-trans triene unit selectively undergoes cyclization during GC. These studies also provided an explanation to the controversial GC-MS data reported for this lipoxygenase product.  相似文献   

16.
We have studied the aerobic oxidation of linoleyl alcohol (LAL) by potato tuber lipoxygenase in the presence of 0.02% (w/v) non-ionic detergent Lubrol PX (and its analog C12E10) and 0.1 mM sodium dodecyl sulfate to investigate the role of carboxylic group in substrate binding. While the enzyme displayed a comparable affinity toward LA and LAL, the rate of LAL oxidation was approximately one-fourth of that of linoleic acid. The pH-profile of the reaction suggests that the rate of LAL oxidation is controlled by two ionizable groups with pKavalues of 5.3 and 7.5, with optimal pH being 6.4±0.1. Since LAL is not ionizable at this pH, we conclude that the rate of the reaction is controlled by two ionogenic groups of the enzyme. The primary dioxygenation product(s) of LAL had a maximal absorbance at 233±1 nm. The products have been isolated, catalytically hydrogenated with H2over Pd on carbon, and analyzed by GC-MS. Two major equimolar products were found to be 9- and 13-hydroxystearyl alcohols, indicating that 9- and 13-hydroperoxylinoleyl alcohols are the primary dioxygenation products. Based on these results we propose that the carboxyl group of polyunsaturated fatty acid may not be involved in substrate binding of potato tuber lipoxygenase.  相似文献   

17.
Methyl ester of jasmonic acid (Me-JA) influences the induced resistance of potato tubers to late blight caused by Phytophthora infestans. Treatment of potato tuber disk surface with Me-JA solution or exposure to an atmosphere containing Me-JA vapors (10(-6)-10(-5) M) increased the rate of rishitin biosynthesis induced by arachidonic acid or P. infestans. Methyl jasmonate increased the sensitivity of potato tissue to arachidonic acid. As a result, in the presence of Me-JA, the protective properties of arachidonic acid were observed at lower concentrations than in the absence of Me-JA. In addition, Me-JA reduced the adverse effects of lipoxygenase inhibitors (salicylhydroxamic acid and esculetin) on the induced resistance of potato tubers to late blight. Therefore, the synergistic interaction of Me-JA and biogenic elicitors can be regarded as part of a mechanism of potato defense against diseases.  相似文献   

18.
The vascular actions of several prostanoids and arachidonate lipoxygenase products were investigated on the gastric circulation of rat and rabbit perfused with Kreb's solution. Under resting conditions, prostacyclin and PGE2 produced small decreases in perfusion pressure with prostacyclin being the more potent. During vasoconstriction induced by infusion of noradrenaline, vasopressin or angiotensin II, prostacyclin was 20–40 times as active as PGE2 as a gastric vasodilator in rat or rabbit stomach. PGF was a less potent vasoconstrictor than noradrenaline, while the epoxy-methano endoperoxide analogue produced a long-lasting vasoconstriction. The putative metabolite, 6-oxo-PGE1 was less active than prostacyclin as a vasodilator, having comparable activity to PGE1, whereas 6-oxo-PGF had very little activity. The endoperoxide, PGH2 reduced perfusion pressure, this effect being inhibited by concurrent infusion of 15-HPETE. The vasodilation induced by arachidonic acid was likewise reduced by 15-HPETE, and abolished by indomethacin infusion. The arachidonate lipoxygenase hydroperoxides were vasodilator in the gastric circulation, the rank order of potency being 12-HPETE > 11-HPETE > 5-HPETE > 15-HPETE in both rat and rabbit stomach. It is possible that such vasoactive lipoxygenase products, may play modulator roles in the gastric mucosa.  相似文献   

19.
Many studies have documented the involvement of eicosanoids in insect cellular immune responses to bacteria. The use of the fungal pathogen Beauveria bassiana as a nodulation elicitor, with inhibition of phospholipase A(2) by dexamethasone, extends the principle to fungi. This study also provides the first evidence of involvement of the lipoxygenase (LOX) pathway rather than the cyclooxygenase (COX) pathway in synthesis of the nodulation mediating eicosanoid(s). The LOX product, 5(S)-hydroperoxyeicosa-6E,8Z,11Z,14Z-tetraenoic acid (5-HPETE), substantially reversed nodulation inhibition caused by dexamethasone and the LOX inhibitors, caffeic acid and esculetin. The COX product, prostaglandin H(2) (PGH(2)), did not reverse the nodulation inhibition by dexamethasone or the COX inhibitor, ibuprofen. None of the inhibitors tested had a significant effect on the phagocytosis of B. bassiana blastospores in vitro. Hemocyte phenoloxidase activity was reduced by dexamethasone, esculetin, and the COX inhibitor, indomethacin. The rescue candidates 5-HPETE and PGH(2) did not reverse the inhibition.  相似文献   

20.
11-Hydroperoxy-eicosa-5,8,12,14-tetraenoic acid [11-HPETE] was prepared by chromatographic separation of the hydroperoxides formed from the singlet oxygen oxidation of arachidonic acid [20:4]. 1-[14C]-HPETE was incubated with prostaglandin endoperoxide synthetase preparations from ram seminal vesicles. No prostaglandins products deriving from 11-HPETE were detected in any of the incubations. 11-Hydroxy-eicosa-5,8,12,14-tetraenoic acid [11-HETE], formed by the action of the hydroperoxidase component of prostaglandin endoperoxidase synthetase was the major product formed. The peroxidase activity was absolutely dependent on epinephrine and was stimulated by hematin. 11-HPETE does not appreciably effect the extent of conversion of arachidonic acid into prostaglandin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号