共查询到20条相似文献,搜索用时 15 毫秒
1.
Genic Heterozygosity and Protein Polymorphism among Local Populations of OENOTHERA BIENNIS 总被引:1,自引:0,他引:1
下载免费PDF全文

Levin DA 《Genetics》1975,79(3):477-491
Twenty enzyme loci were studied in 44 Illinois populations of Oenothera biennis; four were polymorphic. Most of the variation was distributed between populations. Fifty-nine percent of the populations had one genotype, 27% two genotypes and the remaining 16% from three to five genotypes; the average was 1.50. The proportion of genetic diversity present in single populations is.38 of that present in the state. Members of single populations were uniformly heterozygous for 1 to 4 loci. The mean heterozygosity per population ranged from 0 to 20%. For Illinois populations collectively, heterozygosity averaged 4.5%. There was much gene frequency heterogeneity between populations. The true standardized genetic variance among populations for alleles at polymorphic loci varied from.40 to.78. Populations from Cook County were much more similar inter se than those downstate, had fewer genotypes and polymorphic loci, and had less heterozygosity than downstate populations. The mean normalized genetic identity among Cook County populations was.987 versus.947 for downstate populations. The mean number of genotypes per population in Cook County was 1.06 versus 2.40 in downstate populations. There was only one polymorphic locus in Cook County, VLP. The genetic structure of Oe. biennis suggests that single populations are colonized by one, or at best a few individuals. Cook County populations are judged to be less variable than downstate populations because the mean age of the populations probably is less than that of those downstate. 相似文献
2.
3.
4.
Etta K?fer 《Genetics》1976,82(4):605-627
To analyze mitotic recombination in translocation heterozygotes of A. nidulans two sets of well-marked diploids were constructed, homo- or heterozygous for the reciprocal translocations T1(IL;VIIR) or T2(IL;VIIIR) and heterozygous for selective markers on IL. It was found that from all translocation heterozygotes some of the expected mitotic crossover types could be selected. Such crossovers are monosomic for one translocated segment and trisomic for the other and recovery depends on the relative viabilities of these unbalanced types. The obtained segregants show characteristically reduced growth rates and conidiation dependent on sizes and types of mono- and trisomic segments, and all spontaneously produce normal diploid sectors. Such secondary diploid types either arose in one step of compensating crossing over in the other involved arm, or—more conspicuously—in two steps of nondisjunction via a trisomic intermediate.—In both of the analyzed translocations the segments translocated to IL were extremely long, while those translocated from IL were relatively short. The break in I for T1(I;VII) was located distal to the main selective marker in IL, while that of T2(I;VIII) had been mapped proximal but closely linked to it. Therefore, as expected, the selected primary crossover from the two diploids with T2( I;VIII) in coupling or in repulsion to the selective marker, showed the same chromosomal imbalance and poor growth. These could however be distinguished visually because they spontaneously produced different trisomic intermediates in the next step, in accordance with the different arrangement of the aneuploid segments. On the other hand, from diploids heterozygous for T1( I;VII) mitotic crossovers could only be selected when the selective markers were in coupling with the translocation; these crossovers were relatively well-growing and produced frequent secondary segregants of the expected trisomic, 2n+VII, type. For both translocations it was impossible to recover the reciprocal crossover types (which would be trisomic for the distal segments of I and monosomic for most of groups VII or VIII) presumably because these were too inviable to form conidia.—In addition to the selected segregants of expected types a variety of unexpected ones were isolated. The conditions of selection used favour visual detection of aneuploid types, even if these produce only a few conidial heads and are not at a selective advantage. For T2(I;VIII) these "non-selected" unbalanced segregants were mainly "reciprocal" crossovers of the same phenotype and imbalance as the selected ones. For T1(I;VII) two quite different types were obtained, both possibly originating with loss of the small VII–I translocation chromosome. One was isolated when the selective marker in repulsion to T1(I;VII) was used and, without being homo- or hemizygous for the selective marker, it produced stable sectors homozygous for this marker. The other was obtained from both coupling and repulsion diploids and showed a near-diploid genotype; it produced practically only haploid stable sectors of the type expected from monosomics, 2n–1 for the short translocation chromosome. 相似文献
5.
6.
7.
A Comprehensive Study of Genic Variation in Natural Populations of Drosophila melanogaster. II. Estimates of Heterozygosity and Patterns of Geographic Differentiation
下载免费PDF全文

A study of genic variation in natural population of D. melanogaster was undertaken (1) to obtain a better estimate of heterozygosity by sampling a relatively large number of gene loci and (2) to identify different groups of polymorphic loci whose variation patterns might suggest different kinds of selection forces. A total of 117 gene loci (coding for 79 enzymes and 38 abundant proteins) were studied in 15 geographically distant populations originating from different continents. The findings of this study are as follows: (1) of the 117 gene loci studied, 61 are polymorphic and 56 are uniformly monomorphic everywhere. (2) An average population is polymorphic for 43% of its gene loci and an average individual is heterozygous for 10% of its gene loci. These estimates are remarkably similar among populations. (3) The average within-locality heterozygosity (H(S)) for polymorphic loci is uniformly distributed over the range of heterozygosity observed; i.e. , given that a locus has any local variation, it is nearly as likely to have a lot as a little. (4) The distribution of F(ST) (fixation index) is strongly skewed, with a prominent mode at 8-10% and a long tail of high values reaching a maximum of 58%. Two-thirds of all loci fall within the bell-shaped distribution centered on an F(ST) of 8-10%, a result compatible with the notion that they are experiencing a common tendency toward small interlocality differences owing to extensive gene flow among populations. (5) The distribution of total heterozygosity (H(T)) has a prominent bimodal distribution. The lower mode consists of loci with single prominent allele and a few uncommon ones and the upper mode consists of clinally varying loci with a high F(ST ) (e.g., Adh and G6-pd), loci with many alleles in high frequency (e.g., Ao and Xdh) and loci with two alleles in high frequency in all populations but, with little interpopulational differentiation (e.g., Est-6 and alpha-Fuc). The loci in the lower mode are probably under purifying selection; a large proportion of those in the latter mode may be under balancing selection. (6) Comparison of genic variation for loci located inside vs. outside inversions, comparison of F(ST) for inversions and their associated genes, and comparison of F(ST) and map position for pairs of loci all suggest that, while linkage has some influence, it does not seem to constrain the pattern of variation that a locus may develop. (7) Eighteen polymorphic loci show latitudinal variation in allele frequencies which are consistent in populations from different continents. (8) Estimates of Nei genetic distance between population pairs are generally low between populations on the same continent and high between populations on different continents. There are two important exceptions: population pairs for which both localities are in the temperate zone show no relationship to distance, and in cases where both populations are tropical or subtropical, the genetic distance is higher than for the temperate-tropical comparisons and seem even higher than one would expect from the geographic distance separating them. The latter observation suggests that either geographic separation outweighs differences in environment in determining the genetic composition of a population or that all tropical populations are not experiencing the same environment.-The results are discussed in relation to the neutralist-selectionist controversy of genic variation and two important conclusions are drawn: First, there is a negative correlation between the number of loci sampled and the resulting heterozygosity. This means that available estimates of heterozygosity, 85% of which are based on 30 or fewer loci, are high and hence not appropriate for making between-taxa comparisons. Secondly, there is a group of loci, comprising one-third of polymorphic loci (or about 15% of all loci studied), that is distinguishable by different patterns of variation within and among populations. Most of these loci have clinal variation which is consistent with the hypothesis that their genetic variation is maintained by balancing selection. 相似文献
8.
9.
Genic variation in male haploids and male diploids was compared assuming constant fitnesses (derived from computer-generated random numbers) and infinite population size. Several models were studied, differing by the fitness correlation between the sexes (rs) and genotypes (rg), and by the intensity of selection as measured by the coefficient of variation (CV) of the fitness distribution. Genic variation was quantified using the proportion of polymorphic loci, P, the gene diversity at polymorphic loci, Hp, and the gene diversity over all loci, Ha. The two genetic systems were compared via variation ratios: variation in male haploidy/variation in male diploidy.—P and Ha were markedly lower for male-haploids than for male diploids, the variation ratios declining with increasing rs, rg and CV, but the two genetic systems were similar for Hp. Except for male diploids with rs = 1, the two sexes had different equilibrium gene frequencies but the sample sizes required to detect such differences reliably were larger than usually possible in surveys of natural populations.—Data from natural populations fit the above trends qualitatively, but the variation ratios are much lower than those from our analyses, except that for Hp, which is higher when Drosophila is excluded. Also, the frequency distribution of most common alleles from electrophoretic data has a deficiency of intermediate frequencies compared to that from the computer-generated sets of fitnesses, possibly reflecting either the influence of stochastic processes shifting frequencies away from equilibrium or the involvement of alleles under selection-mutation balance.——While electrophoretic data suggest that Drosophila has unusually high levels of genic variation, unusually low levels of genic variation in male haploids compared with male diploids are not strongly indicated. However, if further data confirm male haploids as having low levels of genic variation, likely explanations are that the bulk of electrophoretically detected variation involves fixed-fitness balancing selection, selection-mutation balance involving slightly deleterious recessive alleles, new favorable male haploid alleles moving more rapidly to fixation than under male diploidy and thus carrying linked loci to fixation faster, or some combination of these possible factors. 相似文献
10.
Lack of Genic Variation in the Abundant Proteins of Human Kidney 总被引:8,自引:2,他引:6
Abundant proteins of 25 human kidneys were surveyed for genic variation by means of two-dimensional electrophoresis. Eighty-three (83) proteins were scored, and no genic variation was detected. This reduction in genic heterozygosity corroborates results determined with two-dimensional electrophoresis in mice and flies. These results suggest that previous estimates of electrophoretic variation may have been in error because of biased selection of loci. 相似文献
11.
Slavé Petrovski Quanli Wang Erin L. Heinzen Andrew S. Allen David B. Goldstein 《PLoS genetics》2013,9(8)
A central challenge in interpreting personal genomes is determining which mutations most likely influence disease. Although progress has been made in scoring the functional impact of individual mutations, the characteristics of the genes in which those mutations are found remain largely unexplored. For example, genes known to carry few common functional variants in healthy individuals may be judged more likely to cause certain kinds of disease than genes known to carry many such variants. Until now, however, it has not been possible to develop a quantitative assessment of how well genes tolerate functional genetic variation on a genome-wide scale. Here we describe an effort that uses sequence data from 6503 whole exome sequences made available by the NHLBI Exome Sequencing Project (ESP). Specifically, we develop an intolerance scoring system that assesses whether genes have relatively more or less functional genetic variation than expected based on the apparently neutral variation found in the gene. To illustrate the utility of this intolerance score, we show that genes responsible for Mendelian diseases are significantly more intolerant to functional genetic variation than genes that do not cause any known disease, but with striking variation in intolerance among genes causing different classes of genetic disease. We conclude by showing that use of an intolerance ranking system can aid in interpreting personal genomes and identifying pathogenic mutations. 相似文献
12.
William Amos 《PloS one》2013,8(4)
The “heterozygote instability” (HI) hypothesis suggests that gene conversion events focused on heterozygous sites during meiosis locally increase the mutation rate, but this hypothesis remains largely untested. As humans left Africa they lost variability, which, if HI operates, should have reduced the mutation rate in non-Africans. Relative substitution rates were quantified in diverse humans using aligned whole genome sequences from the 1,000 genomes project. Substitution rate is consistently greater in Africans than in non-Africans, but only in diploid regions of the genome, consistent with a role for heterozygosity. Analysing the same data partitioned into a series of non-overlapping 2 Mb windows reveals a strong, non-linear correlation between the amount of heterozygosity lost “out of Africa” and the difference in substitution rate between Africans and non-Africans. Putative recent mutations, derived variants that occur only once among the 80 human chromosomes sampled, occur preferentially at the centre of 2 Kb windows that have elevated heterozygosity compared both with the same region in a closely related population and with an immediately adjacent region in the same population. More than half of all substitutions appear attributable to variation in heterozygosity. This observation provides strong support for HI with implications for many branches of evolutionary biology. 相似文献
13.
14.
15.
Genic VERSUS Chromosomal Variation in Natural Populations of DROSOPHILA SUBOBSCURA 总被引:3,自引:6,他引:3
下载免费PDF全文

Gametic frequencies in one mainland and one island population of D. subobscura were obtained by means of extracting wild chromosomes and subsequently analyzing them for inversions and allozymes. The high degree of cytological heterogeneity which characterizes these populations is not reflected in the genetic data. Two cases of non-random association were observed among eighteen pair-wise comparisons involving gene alleles and inversions to which the locus is linked. In both cases exchange of alleles at the locus is completely suppressed by the inversions. Four cases of linkage disequilibrium were detected among eighteen pairs of loci; two of them could best be explained as transient associations generated by random drift. The results suggest that disequilibria among enzyme loci are not widespread in natural populations—Populations with a lower degree of chromosomal variation are genetically as variable as populations with a higher degree of chromosomal variation. This observation does not support the hypothesis that selection in marginal homokaryotypic populations is for specialized homozygous genotypes. 相似文献
16.
Genic Variation in Abundant Soluble Proteins of DROSOPHILA MELANOGASTER and DROSOPHILA PSEUDOOBSCURA
下载免费PDF全文

Genic variation was surveyed for 20 proteins of Drosophila melanogaster and 18 proteins of D. pseudoobscura. Analysis was by extraction and one-dimensional polyacrylamide gel electrophoresis under nondenaturing conditions, followed by staining with Coomassie Brilliant Blue to detect soluble proteins present in relatively large amounts ("abundant soluble proteins"). D. melanogaster was polymorphic for 65% of its protein loci and an individual was heterozygous for 10% of its loci. The respective figures for D. pseudoobscura were 61% and 11%. These estimates of genic variation fall between previously published estimates obtained for these species by one-dimensional electrophoresis of soluble enzymes and those obtained by two-dimensional electrophoresis of solubilized abundant proteins. However, variation for both species could be strongly partitioned between loci, on the basis of tissue and stage expression of the proteins. The results are discussed with respect to their bearing on the possibility that abundant proteins constitute a distinct class of proteins less polymorphic than soluble enzymes. 相似文献
17.
DNA methylation is an epigenetic mechanism with the potential to regulate gene expression and affect plant phenotypes. Both hybridization and genome doubling may affect the DNA methylation status of newly formed allopolyploid plants. Previous studies demonstrated that changes in cytosine methylation levels and patterns were different among individual hybrid plant, therefore, studies investigating the characteristics of variation in cytosine methylation status must be conducted at the population level to avoid sampling error. In the present study, an F1 hybrid diploid population and three allotriploid populations with different heterozygosity [originating from first-division restitution (FDR), second-division restitution (SDR), and post-meiotic restitution (PMR) 2n eggs of the same female parent] were used to investigate cytosine methylation inheritance and variation relative to their common parents using methylation-sensitive amplification polymorphism (MSAP). The variation in cytosine methylation in individuals in each population exhibited substantial differences, confirming the necessity of population epigenetics. The total methylation levels of the diploid population were significantly higher than in the parents, but those of the three allotriploid populations were significantly lower than in the parents, indicating that both hybridization and polyploidization contributed to cytosine methylation variation. The vast majority of methylated status could be inherited from the parents, and the average percentages of non-additive variation were 6.29, 3.27, 5.49 and 5.07% in the diploid, FDR, SDR and PMR progeny populations, respectively. This study lays a foundation for further research on population epigenetics in allopolyploids. 相似文献
18.
19.
Genic Heterogeneity within Electrophoretic "Alleles" and the Pattern of Variation among Loci in DROSOPHILA PSEUDOOBSCURA
下载免费PDF全文

Rama S. Singh 《Genetics》1979,93(4):997-1018
An investigation, similar to our previously reported xanthine dehydrogenase study, was undertaken to examine the extent of hidden genic variation at nine loci (five larval proteins, three esterases and one aldehyde oxidase) by sequential application of various electrophoretic criteria employing pH, gel concentration and buffer variation. Polymorphic loci appear to fall into two distinct groups: weakly polymorphic, including larval protein 6, 7, 8, 10 and 13 and esterase-1 and -6; and highly polymorphic, including esterase-5, Xdh and possibly Ao. Monomorphic loci may belong to a third group different from all polymorphic loci. Bogota, a geographical isolate that is reproductively isolated from the mainland population, was found to be genetically distinct at four of the ten loci examined in detail so far, including Xdh, whereas previously it was found to be genetically distinct at none. These results are discussed in the light of balancing selection, neutral and mutation-selection hypotheses of genic variation in natural populations. 相似文献
20.
ULF HALLMÉN 《Physiologia plantarum》1974,32(1):78-83
Uptake, translocation and complex formation of 14C-labelled 4-amino-3,5,6-trichloropicolinic acid (picloram) and 2,4-dichlorophenoxyacetic acid (2,4-D) in seedlings of rape (Brassica napus L. cv. Nilla) and sunflower (Helianthus annuus L. var. uniflorus) were studied. Sunflower is susceptible both to 2,4-D and picloram, while rape is susceptible to 2,4-D but more tolerant to picloram. The uptake of the herbicides through the leaves was almost complete in both species. Translocation of 2,4-D into the roots took place more readily than that of picloram. In sunflower about 50 per cent of the applied 2,4-D was extruded through the roots into the nutrient solution after 9 days. In the picloram-treated sunflower most of the activity was found in the aerial parts, while in picloram-treated rape most of the activity still occurred in the treated leaf after 9 days. No activity at all was found in the roots or in the nutrient solution of the picloram-treated rape seedlings. While the major part of 2,4-D always was found in the state of free herbicide, a large fraction of picloram was rapidly bound into water-soluble complexes. This binding was especially pronounced in rape. Separation by paper chromatography showed that different radioactive compounds were formed. Most of these could be hydrolyzed, thereby releasing free herbicide. The results support the hypotheses that complex formation could counteract herbicide translocation and toxicity of auxin herbicides. 相似文献