共查询到20条相似文献,搜索用时 0 毫秒
1.
Microdialysis technique has been developed to study secretory function of the adrenal gland in anesthesized rats. Concentration of adrenaline and noradrenaline in sequential 20 min microdialysis samples was measured by HPLC with electrochemical detection. The suitability of method was tested by local and central stimulation of catecholamine secretion. In the first case 100 mmol of KCl or 1 mmol of carbachol were added to perfusion medium, in the second one hypovolemic hypotension was applied. All the stimuli used increased catecholamine levels in the adrenal gland dialysates. Institute of Experimental Cardiology of the All-Union. 相似文献
2.
A R Artalejo C Montiel P Sánchez-García G Uceda J M Guantes A G García 《Biochemical and biophysical research communications》1990,169(3):1204-1210
Alamethicin enhances the rate of catecholamine output from perfused cat adrenal glands in a concentration-dependent manner. At 37 degrees C, catecholamine released went from 4.29 +/- 0.25 to 20.51 +/- 0.63 micrograms/stimulus at ionophore concentrations ranging from 20 to 100 micrograms/ml. Secretion was abolished at 22 degrees C or in the absence of extracellular Ca. The time-course of secretion (quick activation followed by a decline) evoked by alamethicin considerably differs from the catecholamine release pattern seen with A23187, X537A or ionomycin, which evoke a slowly developing, non-inactivating secretory response. In fact, its transient secretion pattern resembles that of nicotinic or high-K stimulation of cat adrenal glands, thus suggesting that alamethicin might form Ca permeable artificial channels in chromaffin cell plasma membranes. 相似文献
3.
Fukushima Y Hikichi H Mizukami K Nagayama T Yoshida M Suzuki-Kusaba M Hisa H Kimura T Satoh S 《American journal of physiology. Regulatory, integrative and comparative physiology》2001,281(5):R1562-R1567
We elucidated the contribution of endogenous pituitary adenylate cyclase-activating polypeptide (PACAP) to neurally evoked catecholamine secretion from the isolated perfused rat adrenal gland. Infusion of PACAP (100 nM) increased adrenal epinephrine and norepinephrine output. The PACAP-induced catecholamine output responses were inhibited by the PACAP type I receptor antagonist PACAP- (6-38) (30-3,000 nM) but were resistant to the PACAP type II receptor antagonist [Lys1,Pro2,5,Ara3,4,Tyr6]-vasoactive intestinal peptide (LPAT-VIP; 30-3,000 nM). Transmural electrical stimulation (ES; 1-10 Hz) or infusion of ACh (6-200 nM) increased adrenal epinephrine and norepinephrine output. PACAP-(6-38) (3,000 nM), but not LPAT-VIP, also inhibited the ES-induced catecholamine output responses. However, PACAP-(6-38) did not affect the ACh-induced catecholamine output responses. PACAP at low concentrations (0.3-3 nM), which had no influence on catecholamine output, enhanced the ACh-induced catecholamine output responses, but not the ES-induced catecholamine output responses. These results suggest that PACAP is released from the nerve endings to facilitate the neurally evoked catecholamine secretion through PACAP type I receptors in the rat adrenal gland. 相似文献
4.
Vasoactive intestinal peptide (VIP) was found in the adrenal gland of ovine fetuses at 130-135 days gestation and was shown to stimulate catecholamine secretion. VIP was demonstrated by immunocytochemistry using the indirect antibody-enzyme method. VIP-immunoreactive nerve fibers were observed in the capsule, zona glomerulosa and inner layer of the cortex as well as in the medulla; furthermore small clusters of VIP-containing cell bodies were found at the corticomedullary border. To study the direct effect of VIP on catecholamine release, fetal adrenal medulla was dispersed into single cells and incubated in vitro with VIP for 6 hours. Catecholamine release into the medium was measured at 1, 3 and 6 hours. At 6 hours of incubation, VIP stimulated total catecholamine release from fetal adrenomedullary cells in a dose-dependent manner at concentrations ranging from 10(-8) to 10(-4) M. The release of norepinephrine and epinephrine, but not dopamine, was significantly enhanced. The presence of VIP in the fetal adrenal cortex and medulla, and the ability of VIP to stimulate catecholamine release from fetal adrenomedullary cells in vitro suggest that VIP may be an important modulator of medullary catecholamine secretion during fetal life. 相似文献
5.
6.
7.
Retrograde perfusion was used to investigate the effect of an opiate agonist and an opiate antagonist on the release of catecholamines and [Met5]-enkephalin immunoreactive material (ME-IRM) from bovine adrenal glands. Etorphine (5 X 10(-7) M) inhibited the spontaneous outflow of ME-IRM by approximately 10 percent but had no significant effect on the spontaneous catecholamine release. Acetylcholine (ACh, 5 X 10(-5) M) or 1,1-dimethyl-4-phenylpiperazinium (DMPP, 5 X 10(-5) M) stimulated release of ME-IRM and catecholamines was significantly decreased by the addition of etorphine. Diprenorphine (5 X 10(-7) M) had no significant effect on the spontaneous outflow of either ME-IRM or catecholamines. Diprenorphine reversed the inhibition of the DMPP-stimulated release caused by etorphine. After submaximal stimulation of the gland with DMPP (1 X 10(-5) M), a further stimulation of release of ME-IRM and catecholamines was observed after the addition of diprenorphine alone, i.e., in the absence of etorphine. These results provide further evidence supporting the contention that opiates modulate the secretion of catecholamines and ME-IRM from the adrenal gland. 相似文献
8.
Borges R 《Seminars in cell & developmental biology》1997,8(2):113-120
Catecholamine secretion in the rat can be studied in freely moving and anaesthetized animals, in isolated-perfused adrenals, medullae slices and isolated cultured cells. In addition the rat offers the advantage over the more widely used bovine adrenal model that researchers can have access to animals of the same age, sex and feeding conditions. Catecholamine release is similar to other species although it gives robust secretion in response to stimuli such as muscarinic agonists, bradykinin or VIP. It also allows the study of neurotransmission at the splanchnic-adrenal synapse. The use of single-cell preparations (patch-clamp, microfluorimetry, amperometry or capacitance) has overcome the limitations of the number of cells obtained from a gland. It is possible to study secretion in animal models of hypertension, chronic stress or diabetes and rats can be genetically modified. 相似文献
9.
Dehydroepiandrosterone (DHEA) is a putative anti-stress agent and stress is associated with the secretion of catecholamine from the adrenal gland, but the effects of DHEA on catecholamine secretion are not fully understood. Using bovine chromaffin cells, we found that DHEA inhibited catecholamine secretion and cytosolic Ca2+ ([Ca2+]i) rise coupled with nicotinic acetylcholine receptor (nAChR) without exerting an effect on3H-nicotine binding. In the case of high K+ stimulation, DHEA effectively suppressed secretion without affecting [Ca2+]1 rise. Trifluoperazine (TFP), a calmodulin inhibitor, was capable of counteracting the inhibition of DHEA on high K+-induced secretions. In permeabilized cells, DHEA suppressed the Ca2+-induced secretion. These results suggest that DHEA (a) acts as a channel blocker that suppresses Ca2+ influx and subsequent secretions associated with nAChR, or (b) affects the intracellular secretion machinery to suppress high K+-induced secretions without affecting the high K+-induced [Ca2+]i rise. 相似文献
10.
The effects of bombesin and gastrin releasing peptide (GRP) on the release of catecholamine were investigated by using isolated rat adrenal gland. Bombesin and GRP stimulated an epinephrine (E) release with dose-dependency. A half maximal effect of bombesin was observed at 1.2 X 10(-9) M, and a maximal release of E occurred at 1 X 10(-6) M of bombesin. The stimulatory effect of GRP on the E release was very similar to that of bombesin. Although both these peptides also stimulated a norepinephrine (NE) release, a significant effect was detected at concentrations of bombesin and GRP above 1 X 10(-7) M. Nicotine and pilocarpine stimulated both E and NE releases dose dependently, but the effect of pilocarpine on E and NE release was 1/100 or less potent than that of nicotine. Bombesin-induced catecholamine releases were not inhibited by hexamethonium or atropine that fully impeded the stimulatory effects of nicotine or pilocarpine. In addition, bombesin had additive effects on the nicotine- or pilocarpine-induced E and NE releases. These data strongly suggest that bombesin or GRP plays a physiological role as one of the important regulators in catecholamine secretion in the adrenal gland. 相似文献
11.
P S Liu C C Chen L S Kao 《Proceedings of the National Science Council, Republic of China. Part B, Life sciences》1989,13(4):307-313
The molecular mechanism of honokiol, extracted from the bark of Magnolia obovata, was studied using bovine adrenal chromaffin cells as a model system. Honokiol inhibits catecholamine secretion induced by carbachol and DMPP and that induced by exposure to high K+ and Ba2+ but to a lesser extent. The inhibitory effects of trifluoperazine and honokiol on carbachol-, high K(+)- and Ba2(+)- induced secretion were not additive. The results suggest that honokiol interferes with the interaction between the acetylcholine receptor and its agonists and that honokiol may also affect the steps in exocytosis after intracellular calcium has been raised, possibly at the site(s) where calmodulin acts. 相似文献
12.
Standard (UICC) chrysotile B asbestos fibres caused rapid (within minutes) 5-to-8-fold stimulations of catecholamine secretion from isolated bovine adrenal chromaffin cells without affecting their viability (97%). The stimulation of catecholamine secretion by asbestos was selective to chrysotile type fibres, half-maximal stimulation by standard chrysotile B, chrysotile A, crocidolite, amosite and silica fibres being observed at 7, 73, 160, 250 and ? 500 μg per ml, respectively. The secretory effect of chrysotile B was additive to that of acetylcholine and blocked by either the divalent cations, Co2+, Ni2+ and Mg2+ or the ion chelators, EGTA and EDTA. Conversely, neither verapamil, methoxyverapamil, or removal of extracellular calcium affected the asbestos-evoked catecholamine secretion. These data indicate that the selective stimulatory effect of chrysotile type asbestos on adrenal chromaffin cells can be mediated by membrane or intracellular calcium and raise the question of the possible involvement of catecholamines in the pathogenesis of asbestos related diseases. 相似文献
13.
Guanine nucleotide effects on catecholamine secretion from digitonin-permeabilized adrenal chromaffin cells 总被引:16,自引:0,他引:16
The nonhydrolyzable GTP analogue guanosine 5'-(beta, gamma-imido)triphosphate (GMP-PNP) produced an ATP-dependent but Ca2+-independent stimulation of [3H]norepinephrine release from permeabilized chromaffin cells. This stimulation of secretion was 25-35% of the secretion induced by 10 microM Ca2+. A similar Ca2+-independent stimulation was produced by other non-hydrolyzable GTP analogues. No effect was seen with a variety of other nucleotides, including GTP. The GMP-PNP effect was specifically inhibited by low concentrations of guanine nucleotides. Addition of cAMP did not mimic the Ca2+-independent GMP-PNP effect, but did slightly enhance Ca2+-dependent secretion. Pretreatment with pertussis toxin had no effect on Ca2+-dependent secretion or on the GMP-PNP effect. There was no detectable diglyceride or inositol phosphate produced during GMP-PNP treatment, and addition of diglyceride and inositol trisphosphate did not induce secretion. Guanosine 5'-(beta-thio)diphosphate (GDP-beta-S), in addition to its ability to inhibit the GMP-PNP effect, partially inhibited Ca2+-dependent secretion. At 10 microM free Ca2+, the effects of GMP-PNP and Ca2+ were nonadditive. In fact, secretion in the presence of both GMP-PNP and 10 microM Ca2+ was slightly less than secretion due to Ca2+ alone. These data suggest that a guanine nucleotide-dependent process interacts in some way with one or more components of the normal Ca2+-dependent secretory pathway. However, it may not be an intrinsic part of the mechanism underlying Ca2+-dependent secretion. 相似文献
14.
15.
16.
Nagayama T Fukushima Y Yoshida M Suzuki-Kusaba M Hisa H Kimura T Satoh S 《American journal of physiology. Regulatory, integrative and comparative physiology》2000,279(2):R448-R454
We elucidated the functional contribution of K(+) channels to cholinergic control of catecholamine secretion in the perfused rat adrenal gland. The small-conductance Ca(2+)-activated K(+) (SK(Ca))-channel blocker apamin (10-100 nM) enhanced the transmural electrical stimulation (ES; 1-10 Hz)- and 1, 1-dimethyl-4-phenyl-piperazinium (DMPP; 5-40 microM)-induced increases in norepinephrine (NE) output, whereas it did not affect the epinephrine (Epi) responses. Apamin enhanced the catecholamine responses induced by acetylcholine (6-200 microM) and methacholine (10-300 microM). The putative large-conductance Ca(2+)-activated K(+) channel blocker charybdotoxin (10-100 nM) enhanced the catecholamine responses induced by ES, but not the responses induced by cholinergic agonists. Neither the K(A) channel blocker mast cell degranulating peptide (100-1000 nM) nor the K(V) channel blocker margatoxin (10-100 nM) affected the catecholamine responses. These results suggest that SK(Ca) channels play an inhibitory role in adrenal catecholamine secretion mediated by muscarinic receptors and also in the nicotinic receptor-mediated secretion of NE, but not of Epi. Charybdotoxin-sensitive Ca(2+)-activated K(+) channels may control the secretion at the presynaptic site. 相似文献
17.
Robert D. Burgoyne Kathryn-Marie Norman 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1984,805(1):37-43
Carbamylcholine-stimulated catecholamine release from adrenal chromaffin cells was completely inhibited by pretreatment of the cells for 10 min with 1 μM calmidazolium. Catecholamine release due to 55 mM K+ and ionophore A23187 was also inhibited by calmidazolium but less effectively than release due to carbamylcholine. Inhibition of release appeared to be due to an effect of calmidazolium on a step distal to Ca2+ entry, since the carbamylcholine-stimulated rise in the concentration of intracellular free calcium, monitored using quin-2, was unaffected by calmidazolium. The possibility was considered that calmidazolium inhibited secretion through an effect on protein kinase C rather than calmodulin. However, the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), had no demonstrable effect on catecholamine release, arguing against a significant role for protein kinase C in secretion from adrenal chromaffin cells. These results give further support to the notion that calmodulin plays a role in the secretory process in chromaffin cells. 相似文献
18.
Flow-injection analysis of catecholamine secretion from bovine adrenal medulla cells on microbeads 总被引:7,自引:0,他引:7
Bovine adrenal medullary cells have been cultured on microbeads which are placed in a low-volume flow system for measurements of stimulation-response parameters. Electronically controlled stream switching allows stimulation of cells with pulse lengths from 1 s to many minutes; pulses may be repeated indefinitely. Catecholamines secreted are detected by an electrochemical detector downstream from the cells. This flow-injection analysis technique provides a new level of sensitivity and precision for measurement of kinetic parameters of secretion. A manual injection valve allows stimulation by higher levels of stimulant in the presence of constant low levels of stimulant. Such experiments show interesting differences between the effects of K+ and acetylcholine on cells partially desensitized to acetylcholine. 相似文献
19.
《Comparative biochemistry and physiology. C: Comparative pharmacology》1991,98(3):495-500
1. The effects of cholinergic drugs on catecholamine (CA) secretion from adrenal chromaffin tissue of the toad were studied.2. CA secretion was induced by ACh or nicotine, but not by muscarine.3. Hexamethonium inhibited the CA release evoked by ACh or nicotine, while d-tubocurarine only affected the nicotinic response. Atropine did not prevent the secretory response.4. Muscarine abolished the secretion induced by the agonists, this effect being prevented by atropine or gallamine, but not by pirenzepine.5. In conclusion, CA secretion in the toad is stimulated by activation of nicotinic receptors. Inhibitory muscarinic receptors are present, most likely of type M2, which may play a regulatory function. 相似文献