首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular acidosis shifts hERG channel activation to more depolarized potentials and accelerates channel deactivation; however, the mechanisms underlying these effects are unclear. External divalent cations, e.g., Ca2+ and Cd2+, mimic these effects and coordinate within a metal ion binding pocket composed of three acidic residues in hERG: D456 and D460 in S2 and D509 in S3. A common mechanism may underlie divalent cation and proton effects on hERG gating. Using two-electrode voltage clamp, we show proton sensitivity of hERG channel activation (pKa = 5.6), but not deactivation, was greatly reduced in the presence of Cd2+ (0.1 mM), suggesting a common binding site for the Cd2+ and proton effect on activation and separable effects of protons on activation and deactivation. Mutational analysis confirmed that D509 plays a critical role in the pH dependence of activation, as shown previously, and that cooperative actions involving D456 and D460 are also required. Importantly, neutralization of all three acidic residues abolished the proton-induced shift of activation, suggesting that the metal ion binding pocket alone accounts for the effects of protons on hERG channel activation. Voltage-clamp fluorimetry measurements demonstrated that protons shifted the voltage dependence of S4 movement to more depolarized potentials. The data indicate a site and mechanism of action for protons on hERG activation gating; protonation of D456, D460 and D509 disrupts interactions between these residues and S4 gating charges to destabilize the activated configuration of S4.  相似文献   

2.
HERG (KCNH2) and ether-à-go-go (eag) (KCNH1) are members of the same subfamily of voltage-gated K+ channels. In eag, voltage-dependent activation is significantly slowed by extracellular divalent cations. To exert this effect, ions bind to a site located between transmembrane segments S2 and S3 in the voltage sensor domain where they interact with acidic residues that are conserved only among members of the eag subfamily. In HERG channels, extracellular divalent ions significantly accelerate deactivation. To investigate the ion-binding site in HERG, acidic residues in S2 and S3 were neutralized singly or in pairs to alanine, and the functional effects of extracellular Mg2+ were characterized in Xenopus oocytes. To modulate deactivation kinetics in HERG, divalent cations interact with eag subfamily-specific acidic residues (D460 and D509) and also with an acidic residue in S2 (D456) that is widely conserved in the voltage-gated channel superfamily. In contrast, the analogous widely-conserved residue does not contribute to the ion-binding site that modulates activation kinetics in eag. We propose that structural differences between the ion-binding sites in the eag and HERG voltage sensors contribute to the differential regulation of activation and deactivation gating in these channels. A previously proposed model for S4 conformational changes during voltage-dependent activation can account for the differential regulation of gating seen in eag and HERG.  相似文献   

3.
HERG (KCNH2) and ether-à-go-go (eag) (KCNH1) are members of the same subfamily of voltage-gated K+ channels. In eag, voltage-dependent activation is significantly slowed by extracellular divalent cations. To exert this effect, ions bind to a site located between transmembrane segments S2 and S3 in the voltage sensor domain where they interact with acidic residues that are conserved only among members of the eag subfamily. In HERG channels, extracellular divalent ions significantly accelerate deactivation. To investigate the ionbinding site in HERG, acidic residues in S2 and S3 were neutralized singly or in pairs to alanine, and the functional effects of extracellular Mg(2+) were characterized in Xenopus oocytes. To modulate deactivation kinetics in HERG, divalent cations interact with eag subfamily-specific acidic residues (D460 and D509) and also with an acidic residue in S2 (D456) that is widely conserved in the voltage-gated channel superfamily. In contrast, the analogous widely-conserved residue does not contribute to the ion-binding site that modulates activation kinetics in eag. We propose that structural differences between the ion-binding sites in the eag and HERG voltage sensors contribute to the differential regulation of activation and deactivation gating in these channels. A previously proposed model for S4 conformational changes during voltagedependent activation can account for the differential regulation of gating seen in eag and HERG.  相似文献   

4.
HERG1 K(+) channels are critical for modulating the duration of the cardiac action potential. The role of hERG1 channels in maintaining electrical stability in the heart derives from their unusual gating properties: slow activation and fast inactivation. HERG1 channel inactivation is intrinsically voltage sensitive and is not coupled to activation in the same way as in the Shaker family of K(+) channels. We recently proposed that the S4 transmembrane domain functions as the primary voltage sensor for hERG1 activation and inactivation and that distinct regions of S4 contribute to each gating process. In this study, we tested the hypothesis that S4 rearrangements underlying activation and inactivation gating may be associated with distinct cooperative interactions between a key residue in the S4 domain (R531) and acidic residues in neighboring regions (S1 - S3 domains) of the voltage sensing module. Using double-mutant cycle analysis, we found that R531 was energetically coupled to all acidic residues in S1-S3 during activation, but was coupled only to acidic residues near the extracellular portion of S2 and S3 (D456, D460 and D509) during inactivation. We propose that hERG1 activation involves a cooperative conformational change involving the entire voltage sensing module, while inactivation may involve a more limited interaction between R531 and D456, D460 and D509.  相似文献   

5.
The hERG channel has a relatively slow activation process but an extremely fast and voltage-sensitive inactivation process. Direct measurement of hERG's gating current (Piper, D.R., A. Varghese, M.C. Sanguinetti, and M. Tristani-Firouzi. 2003. PNAS. 100:10534-10539) reveals two kinetic components of gating charge transfer that may originate from two channel domains. This study is designed to address three questions: (1) which of the six positive charges in hERG's major voltage sensor, S4, are responsible for gating charge transfer during activation, (2) whether a negative charge in the cytoplasmic half of S2 (D466) also contributes to gating charge transfer, and (3) whether S4 serves as the sole voltage sensor for hERG inactivation. We individually mutate S4's positive charges and D466 to cysteine, and examine (a) effects of mutations on the number of equivalent gating charges transferred during activation (z(a)) and inactivation (z(i)), and (b) sidedness and state dependence of accessibility of introduced cysteine side chains to a membrane-impermeable thiol-modifying reagent (MTSET). Neutralizing the outer three positive charges in S4 and D466 in S2 reduces z(a), and cysteine side chains introduced into these positions experience state-dependent changes in MTSET accessibility. On the other hand, neutralizing the inner three positive charges in S4 does not affect z(a). None of the charge mutations affect z(i). We propose that the scheme of gating charge transfer during hERG's activation process is similar to that described for the Shaker channel, although hERG has less gating charge in its S4 than in Shaker. Furthermore, channel domain other than S4 contributes to gating charge involved in hERG's inactivation process.  相似文献   

6.
Studies on voltage-gated K channels such as Shaker have shown that positive charges in the voltage-sensor (S4) can form salt bridges with negative charges in the surrounding transmembrane segments in a state-dependent manner, and different charge pairings can stabilize the channels in closed or open states. The goal of this study is to identify such charge interactions in the hERG channel. This knowledge can provide constraints on the spatial relationship among transmembrane segments in the channel’s voltage-sensing domain, which are necessary for modeling its structure. We first study the effects of reversing S4’s positive charges on channel activation. Reversing positive charges at the outer (K525D) and inner (K538D) ends of S4 markedly accelerates hERG activation, whereas reversing the 4 positive charges in between either has no effect or slows activation. We then use the ‘mutant cycle analysis’ to test whether D456 (outer end of S2) and D411 (inner end of S1) can pair with K525 and K538, respectively. Other positive charges predicted to be able, or unable, to interact with D456 or D411 are also included in the analysis. The results are consistent with predictions based on the distribution of these charged residues, and confirm that there is functional coupling between D456 and K525 and between D411 and K538.  相似文献   

7.
Vergani P  Blatt MR 《FEBS letters》1999,458(3):285-291
The K+ channel of Saccharomyces cerevisiae encoded by the YKC1 gene includes two pore-loop sequences that are thought to form the hydrophilic lining of the pore. Gating of the channel is promoted by membrane depolarisation and is regulated by the extracellular K+ concentration ([K+]o) both in the yeast and when expressed in Xenopus oocytes. Our previous work showed that substitutions of equivalent residues L293 and A428 within the pore-loops had qualitatively similar effects on both the [K+]o-sensitivity of channel gating and its voltage-dependence. Here, we report that mutations of equivalent residues N275 and N410, N-terminal from the K+ channel signature sequences of the two pores, have very different actions on channel gating and, in this case, are without effect on its voltage-sensitivity. The mutation N410D slowed current activation in a [K+]o-dependent manner and it accelerated deactivation, but without significant effect on the apparent affinity for K+. The N275D mutant, by contrast, had little effect on the [K+]o-sensitivity for activation and it greatly altered the. [K+]o-dependence of current deactivation. Neither mutant affected the voltage-dependence of the steady-state current nor the ability for other alkali cations to substitute for K+ in regulating gating. The double mutant N410D-N275D showed characteristics of N410D in the [K+]o-sensitivity of current activation and of N275D in the [K+]o-sensitivity of deactivation, suggesting that little interaction occurs between pore domains with mutations at these sites. The results indicate that the two pore domains are not functionally equivalent and they suggest that the regulation of gating by external K+ is mediated by K+ binding at two physically distinct sites with different actions.  相似文献   

8.
The kinetics of voltage-dependent inactivation of the rapidly activating delayed rectifier, IKr, are unique among K+ channels. The human ether-a-gogo-related gene (HERG) encodes the pore-forming subunit of IKr and shares a high degree of homology with ether-a-gogo (EAG) channels that do not inactivate. Within those segments thought to contribute to the channel pore, HERG possesses several serine residues that are not present in EAG channels. Two of these serines, S620 and S631, are known to be required for inactivation. We now show that a third serine, S641, which resides in the outer portion of the sixth transmembrane segment, is also critical for normal inactivation. As with the other serines, S641 is also involved in maintaining ion selectivity of the HERG channel and alters sensitivity to block by E4031. Larger charged or polar substitutions (S641D and S641T) disrupted C-type inactivation in HERG. Smaller aliphatic and more conservative substitutions (S641A and S641C) facilitated C-type inactivation. Our data show that, like S620 and S631, S641 is another key residue for the rapid inactivation. The altered inactivation of mutations at S620, S631, and S641 were dominant, suggesting that a network of hydroxyl side chains is required for the unique inactivation, permeation, and rectification of HERG channels.  相似文献   

9.
K(+) channels encoded by the human ether-à-go-go-related gene (HERG) are distinguished from most other voltage-gated K(+) channels by an unusually slow deactivation process that enables cardiac I(Kr), the corresponding current in ventricular cells, to contribute to the repolarization of the action potential. When the first 16 amino acids are deleted from the amino terminus of HERG, the deactivation rate is much faster (Wang, J., M.C. Trudeau, A.M. Zappia, and G.A. Robertson. 1998. J. Gen. Physiol. 112:637-647). In this study, we determined whether the first 16 amino acids comprise a functional domain capable of slowing deactivation. We also tested whether this "deactivation subdomain" slows deactivation directly by affecting channel open times or indirectly by a blocking mechanism. Using inside-out macropatches excised from Xenopus oocytes, we found that a peptide corresponding to the first 16 amino acids of HERG is sufficient to reconstitute slow deactivation to channels lacking the amino terminus. The peptide acts as a soluble domain in a rapid and readily reversible manner, reflecting a more dynamic regulation of deactivation than the slow modification observed in a previous study with a larger amino-terminal peptide fragment (Morais Cabral, J.H., A. Lee, S.L. Cohen, B.T. Chait, M. Li, and R. Mackinnon. 1998. Cell. 95:649-655). The slowing of deactivation by the peptide occurs in a dose-dependent manner, with a Hill coefficient that implies the cooperative action of at least three peptides per channel. Unlike internal TEA, which slows deactivation indirectly by blocking the channels, the peptide does not reduce current amplitude. Nor does the amino terminus interfere with the blocking effect of TEA, indicating that the amino terminus binding site is spatially distinct from the TEA binding site. Analysis of the single channel activity in cell-attached patches shows that the amino terminus significantly increases channel mean open time with no alteration of the mean closed time or the addition of nonconducting states expected from a pore block mechanism.We propose that the four amino-terminal deactivation subdomains of the tetrameric channel interact with binding sites uncovered by channel opening to specifically stabilize the open state and thus slow channel closing.  相似文献   

10.
The kinetics of voltage-dependent inactivation of the rapidly activating delayed rectifier, I Kr, are unique among K+ channels. The human ether-a-gogo-related gene (HERG) encodes the pore-forming subunit of I Kr and shares a high degree of homology with ether-a-gogo (EAG) channels that do not inactivate. Within those segments thought to contribute to the channel pore, HERG, possesses several serine residues that are not present in EAG channels. Two of these serines, S620 and S631, are known to be required for inactivation. We now show that a third serine, S641, which resides in the outer portion of the sixth transmembrane segment, is also critical for normal inactivation. As with the other serines, S641 is also involved in maintaining ion selectivity of the HERG channel and alters sensitivity to block by E4031. Larger charged or polar substitutions (S641D and S641T) disrupted C-type inactivation in HERG. Smaller aliphatic and more conservative substitutions (S641A and S641C) facilitated C-type inactivation. Our data show that, like S620 and S631, S641 is another key residue for the rapid inactivation. The altered inactivation of mutations at S620, S631, and S641 were dominant, suggesting that a network of hydroxyl side chains is required for the unique inactivation, permeation, and rectification of HERG channels.  相似文献   

11.
Deactivation of voltage-gated potassium (K(+)) channels can slow or prevent the recovery from block by charged organic compounds, a phenomenon attributed to trapping of the compound within the inner vestibule by closure of the activation gate. Unbinding and exit from the channel vestibule of a positively charged organic compound should be favored by membrane hyperpolarization if not impeded by the closed gate. MK-499, a methanesulfonanilide compound, is a potent blocker (IC(50) = 32 nM) of HERG K(+) channels. This bulky compound (7 x 20 A) is positively charged at physiological pH. Recovery from block of HERG channels by MK-499 and other methanesulfonanilides is extremely slow (Carmeliet 1992; Ficker et al. 1998), suggesting a trapping mechanism. We used a mutant HERG (D540K) channel expressed in Xenopus oocytes to test the trapping hypothesis. D540K HERG has the unusual property of opening in response to hyperpolarization, in addition to relatively normal gating and channel opening in response to depolarization (Sanguinetti and Xu 1999). The hyperpolarization-activated state of HERG was characterized by long bursts of single channel reopening. Channel reopening allowed recovery from block by 2 microM MK-499 to occur with time constants of 10.5 and 52.7 s at -160 mV. In contrast, wild-type HERG channels opened only briefly after membrane hyperpolarization, and thus did not permit recovery from block by MK-499. These findings provide direct evidence that the mechanism of slow recovery from HERG channel block by methanesulfonanilides is due to trapping of the compound in the inner vestibule by closure of the activation gate. The ability of HERG channels to trap MK-499, despite its large size, suggests that the vestibule of this channel is larger than the well studied Shaker K(+) channel.  相似文献   

12.
Human ether-à-go-go-related gene (HERG) encoded K+ channels were expressed in Chinese hamster ovary (CHO-K1) cells and studied by whole-cell voltage clamp in the presence of varied extracellular Ca2+ concentrations and physiological external K+. Elevation of external Ca2+ from 1.8 to 10 mM resulted in a reduction of whole-cell K+ current amplitude, slowed activation kinetics, and an increased rate of deactivation. The midpoint of the voltage dependence of activation was also shifted +22.3 +/- 2.5 mV to more depolarized potentials. In contrast, the kinetics and voltage dependence of channel inactivation were hardly affected by increased extracellular Ca2+. Neither Ca2+ screening of diffuse membrane surface charges nor open channel block could explain these changes. However, selective changes in the voltage-dependent activation, but not inactivation gating, account for the effects of Ca2+ on Human ether-à-go-go-related gene current amplitude and kinetics. The differential effects of extracellular Ca2+ on the activation and inactivation gating indicate that these processes have distinct voltage-sensing mechanisms. Thus, Ca2+ appears to directly interact with externally accessible channel residues to alter the membrane potential detected by the activation voltage sensor, yet Ca2+ binding to this site is ineffective in modifying the inactivation gating machinery.  相似文献   

13.
Oxidative stress may alter the functions of many proteins including the Slo1 large conductance calcium-activated potassium channel (BKCa). Previous results demonstrated that in the virtual absence of Ca2+, the oxidant chloramine-T (Ch-T), without the involvement of cysteine oxidation, increases the open probability and slows the deactivation of BKCa channels formed by human Slo1 (hSlo1) alpha subunits alone. Because native BKCa channel complexes may include the auxiliary subunit beta1, we investigated whether beta1 influences the oxidative regulation of hSlo1. Oxidation by Ch-T with beta1 present shifted the half-activation voltage much further in the hyperpolarizing direction (-75 mV) as compared with that with alpha alone (-30 mV). This shift was eliminated in the presence of high [Ca2+]i, but the increase in open probability in the virtual absence of Ca2+ remained significant at physiologically relevant voltages. Furthermore, the slowing of channel deactivation after oxidation was even more dramatic in the presence of beta1. Oxidation of cysteine and methionine residues within beta1 was not involved in these potentiated effects because expression of mutant beta1 subunits lacking cysteine or methionine residues produced results similar to those with wild-type beta1. Unlike the results with alpha alone, oxidation by Ch-T caused a significant acceleration of channel activation only when beta1 was present. The beta1 M177 mutation disrupted normal channel activation and prevented the Ch-T-induced acceleration of activation. Overall, the functional effects of oxidation of the hSlo1 pore-forming alpha subunit are greatly amplified by the presence of beta1, which leads to the additional increase in channel open probability and the slowing of deactivation. Furthermore, M177 within beta1 is a critical structural determinant of channel activation and oxidative sensitivity. Together, the oxidized BKCa channel complex with beta1 has a considerable chance of being open within the physiological voltage range even at low [Ca2+]i.  相似文献   

14.
The deep regions of the Na(+) channel pore around the selectivity filter have been studied extensively; however, little is known about the adjacent linkers between the P loops and S6. The presence of conserved charged residues, including five in a row in domain III (D-III), hints that these linkers may play a role in permeation. To characterize the structural topology and function of these linkers, we neutralized the charged residues (from position 411 in D-I and its homologues in D-II, -III, and -IV to the putative start sites of S6) individually by cysteine substitution. Several cysteine mutants displayed enhanced sensitivities to Cd(2+) block relative to wild-type and/or were modifiable by external sulfhydryl-specific methanethiosulfonate reagents when expressed in TSA-201 cells, indicating that these amino acids reside in the permeation pathway. While neutralization of positive charges did not alter single-channel conductance, negative charge neutralizations generally reduced conductance, suggesting that such charges facilitate ion permeation. The electrical distances for Cd(2+) binding to these residues reveal a secondary "dip" into the membrane field of the linkers in domains II and IV. Our findings demonstrate significant functional roles and surprising structural features of these previously unexplored external charged residues.  相似文献   

15.
The participation of amino-terminal domains in human ether-a-go-go (eag)-related gene (HERG) K(+) channel gating was studied using deleted channel variants expressed in Xenopus oocytes. Selective deletion of the HERG-specific sequence (HERG Delta138-373) located between the conserved initial amino terminus (the eag or PAS domain) and the first transmembrane helix accelerates channel activation and shifts its voltage dependence to hyperpolarized values. However, deactivation time constants from fully activated states and channel inactivation remain almost unaltered after the deletion. The deletion effects are equally manifested in channel variants lacking inactivation. The characteristics of constructs lacking only about half of the HERG-specific domain (Delta223-373) or a short stretch of 19 residues (Delta355-373) suggest that the role of this domain is not related exclusively to its length, but also to the presence of specific sequences near the channel core. Deletion-induced effects are partially reversed by the additional elimination of the eag domain. Thus the particular combination of HERG-specific and eag domains determines two important HERG features: the slow activation essential for neuronal spike-frequency adaptation and maintenance of the cardiac action potential plateau, and the slow deactivation contributing to HERG inward rectification.  相似文献   

16.
beta-Scorpion toxins shift the voltage dependence of activation of sodium channels to more negative membrane potentials, but only after a strong depolarizing prepulse to fully activate the channels. Their receptor site includes the S3-S4 loop at the extracellular end of the S4 voltage sensor in domain II of the alpha subunit. Here, we probe the role of gating charges in the IIS4 segment in beta-scorpion toxin action by mutagenesis and functional analysis of the resulting mutant sodium channels. Neutralization of the positively charged amino acid residues in the IIS4 segment by mutation to glutamine shifts the voltage dependence of channel activation to more positive membrane potentials and reduces the steepness of voltage-dependent gating, which is consistent with the presumed role of these residues as gating charges. Surprisingly, neutralization of the gating charges at the outer end of the IIS4 segment by the mutations R850Q, R850C, R853Q, and R853C markedly enhances beta-scorpion toxin action, whereas mutations R856Q, K859Q, and K862Q have no effect. In contrast to wild-type, the beta-scorpion toxin Css IV causes a negative shift of the voltage dependence of activation of mutants R853Q and R853C without a depolarizing prepulse at holding potentials from -80 to -140 mV. Reaction of mutant R853C with 2-aminoethyl methanethiosulfonate causes a positive shift of the voltage dependence of activation and restores the requirement for a depolarizing prepulse for Css IV action. Enhancement of sodium channel activation by Css IV causes large tail currents upon repolarization, indicating slowed deactivation of the IIS4 voltage sensor by the bound toxin. Our results are consistent with a voltage-sensor-trapping model in which the beta-scorpion toxin traps the IIS4 voltage sensor in its activated position as it moves outward in response to depolarization and holds it there, slowing its inward movement on deactivation and enhancing subsequent channel activation. Evidently, neutralization of R850 and R853 removes kinetic barriers to binding of the IIS4 segment by Css IV, and thereby enhances toxin-induced channel activation.  相似文献   

17.
Drug induced long QT syndrome (diLQTS) results primarily from block of the cardiac potassium channel HERG (human-ether-a-go-go related gene). In some cases long QT syndrome can result in the lethal arrhythmia torsade de pointes, an arrhythmia characterized by a rapid heart rate and severely compromised cardiac output. Many patients requiring medication present with serum potassium abnormalities due to a variety of conditions including gastrointestinal dysfunction, renal and endocrine disorders, diuretic use, and aging. Extracellular potassium influences HERG channel inactivation and can alter block of HERG by some drugs. However, block of HERG by a number of drugs is not sensitive to extracellular potassium. In this study, we show that block of WT HERG by bepridil and terfenadine, two drugs previously shown to be trapped inside the HERG channel after the channel closes, is insensitive to extracellular potassium over the range of 0 mM to 20 mM. We also show that bepridil block of the HERG mutant D540K, a mutant channel that is unable to trap drugs, is dependent on extracellular potassium, correlates with the permeant ion, and is independent of HERG inactivation. These results suggest that the lack of extracellular potassium dependency of block of HERG by some drugs may in part be related to the ability of these drugs to be trapped inside the channel after the channel closes.  相似文献   

18.
To explore rearrangements of the reentrant loop HP2 relative to transmembrane domains (TMs) 7 and 8 during transport by the glial glutamate transporter GLT-1/EAAT2, cysteine pairs were introduced at the extracellular ends of these structural elements. The pairs were introduced around 10-15 A "above" the residues, which make contact with substrate in the related archaeal homologue Glt(Ph). Transport by the double mutants M449C/L466C (HP2/TM 8), L453C/I463C (HP2/TM 8), and I411C/I463C (TM 7/TM 8) was inhibited by copper(II)(1,10-phenanthroline)(3) (CuPh) and by Cd(2+). Inhibition was only observed when the two cysteines were present in the same construct, but not with the respective single cysteine mutants or when only one cysteine was paired with a mutation to another residue. Glutamate and potassium, both expected to increase the proportion of inward-facing transporters, significantly protected against the inhibition of transport activity of M449C/L466C by CuPh. The non-transportable analogues kainate and d, l-threo-beta-benzyloxyaspartate are expected to stabilize an outward-facing conformation, but only the latter potentiated the effect of CuPh on M449C/L466C. However, both analogues increased the aqueous accessibility of the cysteines introduced at positions 449 and 466 to a membrane-impermeant sulfhydryl reagent. Inhibition of L453C/I463C by CuPh was protected not only by glutamate but also by the two analogues. In contrast, these ligands had very little effect on the inhibition of I411C/I463C by CuPh. Our results are consistent with the proposal that HP2 serves as the extracellular gate of the transporter and indicate that glutamate and the two analogues induce distinct conformations of HP2.  相似文献   

19.
The mechanism of human ether-à-go-go-related gene (HERG) K+ channel blockade by the antifungal agent ketoconazole was investigated using patch-clamp recording from mammalian cell lines. Ketoconazole inhibited whole-cell HERG current (IHERG) with a clinically relevant half-maximal inhibitory drug concentration (IC50) value of 1.7 microM. The voltage- and time-dependent characteristics of IHERG blockade by ketoconazole indicated dependence of block on channel gating, ruling out a significant role for closed-state channel inhibition. The S6 HERG mutations Y652A and F656A produced approximately 4-fold and approximately 21-fold increases in IC50 for IHERG blockade, respectively. Thus, ketoconazole accesses the HERG channel pore-cavity on channel gating, and the S6 residue F656 is an important determinant of ketoconazole binding.  相似文献   

20.
We examined the mechanism(s) for HERG channel dysfunction in an S818L mutation in the HERG C-terminus using the heterologous expression system in Xenopus oocytes. Injection of S818L cRNA alone did not produce expressed currents. Coinjection of an equal amount of S818L cRNA with wild-type (WT) cRNA into oocytes did not exhibit apparent dominant-negative suppression. However, coinjection of excess amounts of S818L cRNAs with WT cRNA into oocytes decreased HERG current amplitudes and shifted the voltage dependence of activation to negative potentials, accelerated its activation and deactivation. The data suggest that S818L alone cannot form functional channels, whereas S818L subunits can, at least in part, coassemble with WT subunits to form heterotetrameric functional channels, and imply that the HERG C-terminus may contain a domain involving the activation-deactivation process of the channel. These findings may provide new insights into the structure-function relationships of the HERG C-terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号