首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most cultivars of tomato, Lycopersicon esculentum, are sensitive to low (chilling) temperatures (0–15 °C) during seed germination; however, genetic sources of cold (chilling) tolerance have been identified within the related wild species. The purpose of this study was to identify quantitative trait loci (QTLs) that contribute to cold tolerance during germination in tomato using a backcross population of an interspecific cross between a cold-sensitive tomato line (NC84173, recurrent parent) and a L. pimpinellifolium accession (LA722) that germinates rapidly under low temperatures. A total of 119 BC1 individuals were genotyped for 151 restriction fragment length polymorphism (RFLP) markers and a genetic linkage map was constructed. The parental lines and 119 BC1S1 families (self-pollinated progeny of the BC1 individuals) were evaluated for germination at a low temperature (11±0.5 °C). Germination was scored visually as radicle protrusion at 8 h intervals for 28 consecutive days. Germination response was analyzed by the survival analysis and the times to 25, 50 and 75% germination were calculated. In addition, a germination index (GI) was calculated as the weighted mean of the time from imbibition to germination for each family/line. Two QTL mapping techniques, interval mapping (using MAPMAKER/QTL) and single-point analysis (using QGENE), were used to identify QTLs. The results of both methods were similar and two chromosomal locations (3–5 putative QTLs) with significant effects on low temperature germination were identified. The L. pimpinellifolium accession had favorable QTL alleles on chromosomes 1 and NC84173 had favorable QTL alleles on chromosome 4. The percentage of phenotypic variation explained (PVE) by individual QTLs ranged from 11.9% to 33.4%. Multilocus analysis indicated that the cumulative action of all significant QTLs accounted for 43.8% of the total phenotypic variance. Digenic epistatic interactions were evident between two of the QTL-linked markers and two unlinked markers. Transgressive phenotypes were observed in the direction of cold sensitivity. The results indicate that low temperature germination of tomato seed can be improved by marker-assisted selection.  相似文献   

2.
泡桐属植物种类的RFLP分析   总被引:1,自引:0,他引:1  
对我国泡桐属15 个植物种类作了叶绿体DNA 的RFLP 分析, 根据估算的相似系数, 用平均链锁聚类方法构建树状图, 结果可将研究材料分为南方泡桐组、毛泡桐组和白花泡桐组。种间相似系数多在0.70 以上, 说明各种类间亲缘关系较近, 尤其是台湾泡桐和海岛泡桐, 相似系数接近1.00。最后讨论了一些泡桐种类的分类问题。  相似文献   

3.
4.
应用二种定位法比较不同世代水稻产量性状QTL的检测结果   总被引:14,自引:0,他引:14  
应用珍汕97B/密阳46的F2和重组自交系(RIL)群体,建立RFLP连锁图,检测控制稻谷产量及其5个构成因子的QTL。结果表明,具有较大加性效应者,能同时在F2和RIL群体中检测到。而且,在重组自交系群体中,发现设重复的表型鉴定与基于单株的表型鉴定,对效应较高的QTL的检测影响不大。  相似文献   

5.
The National Agricultural Biotechnology Information Center (NABIC) in South Korea reconstructed a RiceQTLPro database for gene positional analysis and structure prediction of the chromosomes. This database is an integrated web-based system providing information about quantitative trait loci (QTL) markers in rice plant. The RiceQTLPro has the three main features namely, (1) QTL markers list, (2) searching of markers using keyword, and (3) searching of marker position on the rice chromosomes. This updated database provides 112 QTL markers information with 817 polymorphic markers on each of the 12 chromosomes in rice.

Availability

The database is available for free at http://nabic.rda.go.kr/gere/rice/geneticMap/  相似文献   

6.
Freezing tolerance is the ability of plants to survive subfreezing temperatures and is a major component of winter survival. In order to study the genetic regulation of freezing tolerance, an F2 population ofBrassica rapa and a doubled haploid population ofBrassica napus were assayedin vitro for relative freezing tolerance of acclimated and nonacclimated plants. Linkage maps developed previously were used to identify putative quantitative trait loci (QTL). Genomic regions with significant effects on freezing tolerance were not found for theB. napus population, but forB. rapa four regions were associated with acclimated freezing tolerance (FTA) and acclimation ability (FTB), and two unliked regions were associated with nonacclimated freezing tolerance (FTN). Acclimation ability was regulated by genes with very small additive effects and both positive and negative dominance effects. The allele from the winter parent at the FTN QTL had positive additive effects, but negative dominance effects. RFLP loci detected by a cold-induced and a stress-related cDNA fromArabidopsis thaliana mapped near two QTL for FTA/FTB. Further tests are needed to determine if alleles at these loci are responsible for the QTL effects we detected.  相似文献   

7.
Crop productivity on acid soil is restricted by multiple abiotic stress factors. Aluminum (Al) tolerance seems to be a key to productivity on soil with a pH below 5.0, but other factors such as Mn toxicity and the deficiency of P, Ca and Mg also play a role. The development of Al-tolerant genotypes of rice is an urgent necessity for improving crop productivity in developing countries. Inhibition of root growth is a primary and early symptom of Al toxicity. The present study was conducted to identify genetic factors controlling the aluminum tolerance of rice. Several parameters related to Al tolerance, most importantly the relative root growth under Al stress versus non-stress conditions, were scored in 188 F3 selfed families from a cross between an Al-tolerant Vietnamese local variety, Chiembau, and an Al-susceptible improved variety, Omon269–65. The two varieties are both Oryza sativa ssp. indica, but showed a relatively high level of DNA polymorphism, permitting the assembly of an RFLP map consisting of 164 loci spanning 1,715.8 cM, and covering most of the rice genome. A total of nine different genomic regions on eight chromosomes have been implicated in the genetic control of root and shoot growth under aluminum stress. By far the greatest effects on aluminum tolerance were associated with the region near WG110 on chromosome 1. This region does not seem to correspond to most of the genes that have been mapped for aluminum tolerance in other species, nor do they correspond closely to one another. Most results, both from physiological studies and from molecular mapping studies, tend to suggest that aluminum tolerance is a complex multi-genic trait. The identification of DNA markers (such as WG110) that are diagnostic for aluminum tolerance in particular gene pools provides an important starting point for transferring and pyramiding genes that may contribute to the sustainable improvement of crop productivity in aluminum-rich soils. The isolation of genes responsible for aluminum tolerance is likely to be necessary to gain a comprehensive understanding of this complex trait. Received: 29 March 2000 / Accepted: 16 August 2000  相似文献   

8.
The wild Bolivian potato, Solanum berthaultii Hawkes, has been used as a source of resistance to the Colorado potato beetle (CPB), Leptinotarsa decemlineata Say, one of the most significant pests of potato. In this study, two reciprocal backcross S. tuberosum x S. berthaultii potato progenies, BCB and BCT, were mapped with RFLP markers and screened for resistance to CPB consumption, oviposition and defoliation. The genotypic and phenotypic data were combined and analysed to locate quantitative trait loci (QTLs) for resistance to CPB. Three QTLs on three chromosomes in BCB, and two QTLs on two chromosomes in BCT influenced resistance. The QTLs were generally additive but one instance of epistasis was noted. Each QTL accounted for 4–12% of the phenotypic variation observed in resistance. In the more resistant BCB population, a three QTL model explained ca. 20% of the variation in CPB oviposition. When alleles at the three QTLs were homozygous S. berthaultii, oviposition was reduced ca. 60% compared to the heterozygotes. The QTLs for resistance to CPB were compared to those previously identified for the type A and B glandular trichomes, which have been implicated in resistance in the same progenies. Generally, the QTLs for resistance to CPB coincided with loci associated with the glandular trichomes confirming the importance of the glandular trichomes in mediating resistance. However, a relatively strong and consistent QTL for insect resistance in both BCB and BCT on chromosome 1 was observed that was not associated with any trichome traits, suggesting the trichomes may not account for all of the resistance observed in these progenies.  相似文献   

9.
刘仁虎  孟金陵 《遗传学报》2006,33(9):814-823
采用RFLP和AFLP标记对来自中国和欧美的7份甘蓝型油菜和22份白菜型油菜进行了遗传多样性分析。在这29份材料中,166个酶-探针组合和2对AFLP引物共检测到1477个RFLP标记和183个AFLP标记。RFLP数据显示以拟南芥EST克隆作探针比用油菜基因组克隆做探针能检测到更多的多态性位点,且采用EcoR Ⅰ或BamH Ⅰ酶切比HindⅢ酶切多态性好,白菜型油菜和甘蓝型油菜中基因的拷贝数平均都为3个左右。UPGMA聚类分析表明中国白菜型油菜的遗传多样性比甘蓝型油菜和欧美白菜型油菜丰富,欧美甘蓝型油菜与欧美白菜型油菜聚为一类,而与中国甘蓝型油菜差异更大。中国白菜型油菜丰富的遗传多样性为中国甘蓝型油菜的改良提供了宝贵的资源,揭示了利用白菜型油菜A基因组和甘蓝型油菜A基因组间亚基因组杂种优势的可能性。  相似文献   

10.
RFLP analysis of soybean seed protein and oil content   总被引:20,自引:0,他引:20  
Summary The objectives of this study were to present an expanded soybean RFLP map and to identify quantitative trait loci (QTL) in soybean [Glycine max (L.) Merr.] for seed protein and oil content. The study population was formed from a cross between a G. max experimental line (A81-356022) and a G. soja Sieb. and Zucc. plant introduction (PI 468916). A total of 252 markers was mapped in the population, forming 31 linkage groups. Protein and oil content were measured on seed harvested from a replicated trial of 60 F2-derived lines in the F3 generation (F23 lines). Each F23 line was genotyped with 243 RFLP, five isozyme, one storage protein, and three morphological markers. Significant (P<0.01) associations were found between the segregation of markers and seed protein and oil content. Segregation of individual markers explained up to 43% of the total variation for specific traits. All G. max alleles at significant loci for oil content were associated with greater oil content than G. soja alleles. All G. soja alleles at significant loci for protein content were associated with greater protein content than G. max alleles.  相似文献   

11.
Importance of over-dominance as the genetic basis of heterosis in rice   总被引:3,自引:0,他引:3  
In populations derived from commercial hybrid rice combination Shanyou 10, F1 hetero-sis and F2 inbreeding depression were observed on grain yield (GYD) and number of panicles (NP). Using marker loci evenly distributed on the linkage map as fixing factors, the F2 population was divided into sub-populations. In a large number of sub-populations, significant correlations were observed between heterozygosity and GYD, and between heterozygosity and NP. This was especially true in type III sub-populations in which the genotype of a fixing factor was heterozy-gotes. In type III sub-populations, 15 QTL for GYD and 13 QTL for NP were detected, of which the majority exhibited over-dominance effects for increasing the trait values. This study showed that over-dominance played an important role in the genetic control of heterosis in rice.  相似文献   

12.
Fingerprinting of 29 accessions of oilseed rape, including seven accessions of Brassica napus, and 22 accessions of B. rapa (B. campestris) from Europe, North America, and China was analyzed using RFLP and AFLP markers. In total, 1 477 polymorphic RFLP bands and 183 polymorphic AFLP bands from 166 enzyme-probe combinations and two pairs of AFLP primers, respectively, were scored for the 29 accessions. On average, RFLP analysis showed that the Arabidopsis EST probe detected more polymorphic bands in Brassica than the random genomic probe performed. More polymorphic RFLP markers were detected with the digestion of EcoR I or BamH I than HindIII. According to the number of bands amplified from each accession, the copy numbers of each gene in the genomes of B. rapa and B. napus were estimated. The average copy numbers in B. rapa of China, B. rapa of Europe, and B. napus, were 3.2, 3.1, and 2.9, respectively. Genetic distance based on the AFLP data was well correlated with that based on the RFLP data (r = 0.72, P<0.001), but 0.39 smaller on average. Genetic diversity analysis showed that Chinese B. rapa was more polymorphic than Chinese B. napus and European materials. Some European B. napus accessions were clustered into European B. rapa, which were distinctly different from Chinese B. napus. The larger variations of Chinese accessions of B. rapa suggest that they are valuable in oilseed rape breeding. Novel strategies to use intersubgenomic heterosis between genome of B. rapa (ArAr) and genome of B. napus (AnAnCnCn) were elucidated.  相似文献   

13.
Epistasis plays an important role as genetic basis of heterosis in rice   总被引:6,自引:0,他引:6  
Thegeneticbasisofheterosisisstilladebatingissue.Twohypotheses,thedominancehypothesisandtheoverdominancehypothesis,bothproposedin1908[1—3],havecompetedformostpartofthiscentury.Althoughmanyresearcherspreferonehypothesistotheother,experimentaldataallowingforcr…  相似文献   

14.
QTLs for salt-tolerance(ST)related traits at the seedling and tillering stages were identified using 99 BC2F8 introgression lines(IL)derived from a cross between IR64(indica)as a recurrent parent and Binam(japonica)from Iran as the donor parent.Thirteen QTLs affecting survival days of seedlings(SDS), score of salt toxicity of leaves(SST),shoot K concentration(SKC)and shoot Na concentration(SNC) at the seedling stage and 22 QTLs underlying fresh weight of shoots(FW),tiller number per plant(TN) and plant height(PH)at the tillering stage were identified.Most QTLs detected at the tillering stage showed obvious differential expression to salt stress and were classified into three types based on their differential behaviors.Type I included 11 QTLs which were expressed only under the non-stress condition.Type II included five QTLs expressed in the control and the salt stress conditions,and three of them(QPh5,QPh8 and QTn9)had similar quantity and the same direction of gene effect,suggesting their expression was less influenced by salt stress.Type III included six QTLs which were detectable only under salt stress,suggesting that these QTLs were apparently induced by the stress.Thirteen QTLs affecting trait difference or trait stability of ILs between the stress and non-stress conditions were identified and the Binam alleles at all loci except QPh4,QTn2 and QFw2a decreased trait difference.The three QTLs less influenced by the stress and 13 QTLs affecting trait stability were considered as ST QTLs which contributed to ST.Comparing the distribution of QTLs detected at the seedling and tillering stages,most(69%)of them were genetically independent.Only four were the same or adjacent regions on chromosomes 1,2,8 and 11 harboring ST QTLs detected at the two stages,suggesting that partial genetic overlap of ST across the two stages occurs.It is likely,therefore,to develop ST rice variety for both stages by pyramiding of ST QTLs of different stages or selection against the overlapping QTLs between the two stages via marker-assisted selection(MAS).  相似文献   

15.
We have developed 85 new markers (50 RFLPs, 5 SSRs, 12 DD cDNAs, 9 ESTs, 8 HSP-encoding cDNAs and one BSA-derived AFLP marker) for saturation mapping of QTL regions for drought tolerance in rice, in our efforts to identify putative candidate genes. Thirteen of the markers were localized in the close vicinity of the targeted QTL regions. Fifteen of the additional markers mapped, respectively, inside one QTL region controlling osmotic adjustment on chromosome 3 ( oa3.1) and 14 regions that affect root traits on chromosomes 1, 2, 4, 5, 6, 7, 8, 9, 10 and 12. Differential display was used to identify more putative candidate genes and to saturate the QTL regions of the genetic map. Eleven of the isolated cDNA clones were found to be derived from drought-inducible genes. Two of them were unique and did not match any genes in the GenBank, while nine were highly similar to cDNAs encoding known proteins, including a DnaJ-related protein, a zinc-finger protein, a protease inhibitor, a glutathione-S-transferase, a DNA recombinase, and a protease. Twelve new cDNA fragments were mapped onto the genetic linkage map; seven of these mapped inside, or in close proximity to, the targeted QTL regions determining root thickness and osmotic adjustment capacity. The gene I12A1, which codes for a UDP-glucose 4-epimerase homolog, was identified as a putative target gene within the prt7.1/brt7.1 QTL region, as it is involved in the cell wall biogenesis pathway and hence may be implicated in modulating the ability of rice roots to penetrate further into the substratum when exposed to drought conditions. RNAs encoding elongation factor 1, a DnaJ-related protein, and a homolog of wheat zinc-finger protein were more prominently induced in the leaves of IR62266 (the lowland rice parent of the mapping materials used) than in those of CT9993 (the upland rice parent) under drought conditions. Homologs of 18S ribosomal RNA, and mRNAs for a multiple-stress induced zinc-finger protein, a protease inhibitor, and a glutathione-S-transferase were expressed at significantly higher levels in CT9993 than in IR62266. Thus several genes involved in the regulation of DNA structure and mRNA translation were found to be drought-regulated, and may be implicated in drought resistance.Communicated by R. Hagemann  相似文献   

16.
Agricultural environments deteriorate due to excess nitrogen application.Breeding for low nitrogen responsive genotypes can reduce soil nitrogen input.Rice genotypes respond variably to soil available nitrogen.The present study attempted quantification of genotype x nitrogen level interaction and mapping of quantitative trait loci (QTLs) associated with nitrogen use efficiency (NUE) and other associated agronomic traits.Twelve parameters were observed across a set of 82 double haploid (DH) lines derived from IR64/Azucena.Three nitrogen regimes namely,native (0 kg/ha; no nitrogen applied),optimum (100 kg/ha) and high (200 kg/ha) replicated thrice were the environments.The parents and DH lines were significantly varying for all traits under different nitrogen regimes.All traits except plant height recorded significant genotype x environment interaction.Individual plant yield was positively correlated with nitrogen use efficiency and nitrogen uptake.Sixteen QTLs were detected by composite interval mapping.Eleven QTLs showed significant QTL x environment interactions.On chromosome 3,seven QTLs were detected associated with nitrogen use,plant yield and associated traits.A QTL region between markers RZ678,RZ574 and RZ284 was associated with nitrogen use and yield.This chromosomal region was enriched with expressed gene sequences of known key nitrogen assimilation genes.  相似文献   

17.
A linkage map of the rapeseed genome comprising 204 RFLP markers, 2 RAPD markers, and 1 phenotypic marker was constructed using a F1 derived doubled haploid population obtained from a cross between the winter rapeseed varieties Mansholt's Hamburger Raps and Samourai. The mapped markers were distributed on 19 linkage groups covering 1441 cM. About 43% of these markers proved to be of dominant nature; 36% of the mapped marker loci were duplicated, and conserved linkage arrangements indicated duplicated regions in the rapeseed genome. Deviation from Mendelian segregation ratios was observed for 27.8% of the markers. Most of these markers were clustered in 7 large blocks on 7 linkage groups, indicating an equal number of effective factors responsible for the skewed segregations. Using cDNA probes for the genes of acyl-carrier-protein (ACP) and -ketoacyl-ACP-synthase I (KASI) we were able to map three and two loci, respectively, for these genes. The linkage map was used to localize QTLs for seed glucosinolate content by interval mapping. Four QTLs could be mapped on four linkage groups, giving a minimum number of factors involved in the genetic control of this trait. The estimated effects of the mapped QTLs explain about 74% of the difference between both parental lines and about 61.7 % of the phenotypic variance observed in the doubled haploid mapping population.  相似文献   

18.
Construction of an RFLP linkage map for cultivated sunflower   总被引:5,自引:0,他引:5  
 An RFLP linkage map was constructed for cultivated sunflower Helianthus annuus L., based on 271 loci detected by 232 cDNA probes. Ninety-three F2 plants of a cross between inbred lines RHA 271 and HA 234 were used as the mapping population. These genetic markers plus a fertility restoration gene, Rf 1, defined 20 linkage groups, covering 1164 cM of the sunflower genome. Of the 71 loci 202 had codominant genotypic segregation, with the rest showing dominant segregation. Thirty-two of the 232 probes gave multiple locus segregation. There were 39 clusters of tightly linked markers with 0 cM distance among loci. This map has an average marker-to-marker distance of 4.6 cM, with 11 markerless regions exceeding 20 cM. Received: 17 June 1997 / Accepted: 19 June 1997  相似文献   

19.
Genetic factors controlling quantitative inheritance of grain yield and its components have not previously been investigated by using replicated lines of an elite maize (Zea mays L.) population. The present study was conducted to identify quantitative trait loci (QTLs) associated with grain yield and grain-yield components by using restriction fragment length polymorphism (RFLP) markers. A population of 150 random F23 lines was derived from the single cross of inbreds Mo17 and H99, which are considered to belong to the Lancaster heterotic group. Trait values were measured in a replicated trial near Ames, Iowa, in 1989. QTLs were located on a linkage map constructed with one morphological and 103 RFLP loci. QTLs were found for grain yield and all yield components. Partial dominance to overdominance was the primary mode of gene action. Only one QTL, accounting for 35% of the phenotypic variation, was identified for grain yield. Two to six QTLs were identified for the other traits. Several regions with pleiotropic or linked effects on several of the yield components were detected.  相似文献   

20.
Summary We have recently cloned both the bovine protamine (Krawetz et al. 1987, DNA 6: 47–57) and high mobility group (HMG-1) cDNAs (Pentecost and Dixon 1984, Bioscience Reports 4: 49–57). They have been used as probes for Restriction Fragment Length Polymorphism analysis of male-female pairs of different species and breeds, within the genus Bos. Utilizing this approach we have studied inheritance, chromosomal location and gene copy number of the bovine protamine and HMG-1 genes. This revealed that these nuclear protein genes are highly conserved suggesting that selective pressure has maintained their gene structures during evolution. A polymorphic Taq 1 restriction fragment was identified that was shown to be a heritable marker. These genes are not sex-linked and are present in a single copy for protamine and at least two copies for the HMG-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号