共查询到20条相似文献,搜索用时 15 毫秒
1.
H. Löppert 《Planta》1981,151(3):293-297
The vacuolar electrical potential of Lemna paucicostata 6746 has an active component of about-130 mV. This hyperpolarization above the diffusion potential was maintained when dicyclohexyl carbodiimide (DCCD) or arsenate (0.1 mM or 5 mM final concentrations, respectively) were added in the light or after the plants had been kept in darkness for 1 h. The ATP level was reduced to 11±3% by DCCD and to 56±6% by arsenate under conditions identical to those during the potential measurements. In this report, it is discussed whether these results could be interpreted in terms of a putative electrogenic ATPase in the plasma membrane of Lemna. Rb+-influx in illuminated plants was 12.5% or 52% of the control when ATP generation was inhibited by DCCD or arsenate. This finding is regarded as justifying the assumption that the availability of ATP at plasmalemma-located transport sites is drastically decreased by these inhibitors.A passive proton-permeability in the cell membrane was induced with different concentrations of carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The potential decrease, caused by the current through this shunt, was not affected by DCCD. It therefore seems less conceivable that the cell membrane remains hyperpolarized because of an increase of membrane resistance concomitant to the inhibition of the pump.The significance of respiratory processes for membrane hyperpolarization is displayed by the depolarizing action of anoxia or KCN. As ATP was found to be non-limiting under these conditions, the inhibition of the electrogenic pump is regarded as being in discord with the concept of an electrogenic ATPase, which is solely responsible for membrane hyperpolarization.Abbreviations CCCP
carbonyl cyanide m-chlorophenyl hydrazone
- DCCD
N, N-dicyclohexyl carbodiimide
- DES
diethylstilbestro
- DNP
2,4-dinitrophenol
- POPOP
1,4-bis (2-(5-phenyloxazolyl))-benzene
- PPO
2,5-diphenyloxazole 相似文献
2.
The dependence of the membrane potential (Em) and the membrane resistance (Rm) of Chara australis R. Brown on the pH of the external medium (pH0) was studied by controlling the activity of the plasmamembrane H+ pump under both light and dark conditions. The activity of the pump was controlled by regulating the internal ATP or Mg2+ concentration in tonoplast-free cells prepared by vacuolar perfusion. In these cells, which contained Mg · ATP (mgATP cells), Em and Rm were very sensitive to pH0, as in normal cells. Em was more negative in light than in the dark at all pH0 values tested. Tonoplast-free cells with very low [ATP]i (-ATP cells) or [Mg2+]i (-Mg cells) showed very weak dependence of Em and Rm on pH0. Thus, the active and not the passive component of Em was sensitive to pH0. At the same time, the high permeability of the plasma membrane to H+ was questioned. In both-ATP cells and-Mg cells, Em was scarcely affected and Rm markedly decreased on illumination.Abbreviations CyDTA
1,2-cyclohexanediamine-N,N-tetraacetic acid
- EGTA
ethyleneglycol-bis-(-aminoethylether)N,N-tetraacetic acid
- HK
hexokinase 相似文献
3.
Plasma membrane potential is a key driver of the physiology of excitable cells like neurons and cardiomyocytes. Voltage-sensitive fluorescent indicators offer a powerful complement to traditional electrode-based approaches to measuring and monitoring membrane potential. Intracellular organelles can also generate membrane potential, yet the electrode- and fluorescent indicator-based approaches used for plasma membrane potential imaging are difficult to implement on intact organelles in their native environment. Here, we survey recent advances in developing and deploying voltage-sensitive fluorescent indicators to interrogate organelle membrane potential in intact cells. 相似文献
4.
The import pathways of the alternative oxidase and the FAd subunit of the ATP synthase from soybean were characterised. The FAd precursor does not require extramitochondrial ATP for import and this was shown to be a characteristic of the mature protein. The alternative oxidase and FAd precursors were shown to differ in their requirement for a membrane potential. The membrane potential was modified using malonate, a competitive inhibitor to complex II. The alternative oxidase could be imported at higher malonate concentrations compared to the FAd. This difference could not be ascribed to the number of positive charges in each presequence as would be predicted from similar studies in fungi. 相似文献
5.
The dye, oxonol-V (bis(3-phenyl-5-oxoisoxazol-4-yl)pentamethine oxonol), can be used to estimate the transmembrane potential of chromaffin granules. The potentials result either from a resting-state Donnan equilibrium (inside negative at pH 6.6) or from an ATP-driven proton pump. The fluorescence and absorption changes generated by ATP addition depended on the pH of the medium and the dye-to-vesicle ratio. Energization resulted in an increase in the number of oxonol-V binding sites, the new binding sites having the same dissociation constant. The rate of dye association was higher with resting than with energized chromaffin granules. The absorption change was associated with a red shift whereas the fluorescence change involved a quenching due to the increase in dye concentration on the membrane. The absorption and fluorescence changes varied linearly with the transmembrane potential difference when the interior potential was positive relative to the medium. 相似文献
6.
3,3′-Dipropylthiodicarbocyanine iodide, a widely used fluorescent probe of membrane potential, was found to inhibit anti-Ig antibody, induced capping of mouse lymphocytes. The dye also lowered the cell ATP content. Experiments with isolated mitochondria revealed that the probe had a potent inhibitory action at site I of the respiratory chain. This mitochondrial blockade helps to explain the ATP depletion and blockade of capping, and gives cause for caution in the use of this dye as a probe of cell membrane potential.Three related dicarbocyanine dyes had similar toxic effects, but two cyanine dyes with much longer alkyl side chains, which have been used as probes of membrane fluidity, did not. 相似文献
7.
Giovanni Quarato Claudia Piccoli Rosella Scrima Nazzareno Capitanio 《Mitochondrion》2011,11(5):764-773
Functional biochemical tests are the gold standard for the diagnosis of mitochondria-related diseases. However, the availability of the biological samples from patients' tissues represents a severe limitation to the number of screenable enzymatic activities. In this study we developed a fluorescent probe-assisted microscopy protocol enabling to assess the ΔΨm-generating capacity by mitochondria immobilized on a glass surface at the single organelle resolution-level. The advantage of this assay over others is to scale-down the amount of the biological sample required to test in a short time the functional activity of all the components of the oxidative phosphorylation system without loss of accuracy. Furthermore, the distribution of a given enzymatic activity can also be evaluated within the mitochondrial population enabling to measure the level of functional heterogeneity of the respiratory chain dysfunction. 相似文献
8.
(1) The relation between the membrane potential and phosphorylation was studied in chloroplasts rapidly prepared from illuminated spinach leaves (light chloroplasts) and from dark-adapted leaves (dark chloroplasts). Light chloroplasts had a higher ATP hydrolysis activity than dark chloroplasts. (2) In the presence of ADP or ATP, a rapidly decaying phase of the field-indicating 518 nm absorbance change with a half-time of 15 ms became apparent in addition to the slow phase with a half-time of more than 300 ms in either type of chloroplast. Under these conditions, light chloroplasts showed a larger rapid phase than dark chloroplasts. (3) The rapid phase was suppressed by dicyclohexylcarbodiimide and was assumed to reflect the dissipation of membrane potential due to proton movements inside the CF1-CF0 ATP synthetase. (4) A model for the proton movement in ATP synthetase is proposed. 相似文献
9.
Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties 总被引:35,自引:0,他引:35
The spectral and metabolic properties of Rhodamine 123, a fluorescent cationic dye used to label mitochondria in living cells, were investigated in suspensions of isolated rat-liver mitochondria. A red shift of Rhodamine 123 absorbance and fluorescence occurred following mitochondrial energization. Fluorescence quenching of as much as 75% also occurred. The red shift and quenching varied linearly with the potassium diffusion potential, but did not respond to ΔpH. These energy-linked changes were accompanied by dye uptake into the matrix space. Concentration ratios, in-to-out, approached 4000:1. A large fraction of internalized dye was bound. At concentrations higher than those needed to record these spectral changes, Rhodamine 123 inhibited ADP-stimulated (State 3) respiration of mitochondria (Ki = 12 μM) and ATPase activity of inverted inner membrane vesicles (Ki = 126 μM) and partially purified F1-ATPase (Ki = 177 μM). The smaller Ki for coupled mitochondria was accounted for by energy-dependent Rhodamine 123 uptake into the matrix. Above about 20 nmol/mg protein (10 μM), Rhodamine 123 caused rapid swelling of energized mitochondria. Effects on electron-transfer reactions and coupling were small or negligible even at the highest Rhodamine 123 concentrations employed. Δψ-dependent Rhodamine 123 uptake together with Rhodamine 123 binding account for the intense fluorescent staining of mitochondria in living cells. Inhibition of mitochondria ATPase likely accounts for the cytotoxicity of Rhodamine 123. At concentrations which do not inhibit mitochondrial function, Rhodamine 123 is a sensitive and specific probe of Δψ in isolated mitochondria. 相似文献
10.
Hare JF 《Journal of bioenergetics and biomembranes》1983,15(4):195-206
Membrane-bound proteinase activity was demonstrated by a solid-phase assay system in both beef heart and rat liver mitochondria. The activity was sensitive to SH reagents and assorted proteinase inhibitors. Although stimulated by nonionic detergents, it became labile when solubilized by detergents. The proteinase activity from heart mitochondria copurified with the ADP:ATP translocator protein. Gel electrophoresis of this preparation revealed the translocator polypeptide as well as a number of minor components. In solubilized mitochondria the ADP:ATP translocator polypeptide slowly disappeared upon standing at 0°C as revealed by polyacrylamide gel electrophoresis under denaturing conditions. The loss of this polypeptide was prevented by addition of proteinase inhibitors as well as the translocator affinity ligand, carboxyatractylate. These observations confirm the presence of an integral membrane proteinase in mitochondria and suggest a structural and enzymatic interaction between the proteinase and the ADP:ATP translocator.Abbreviations PMSF
phenylmethanesulfonyl fluoride
- TPCK
l-1-tosylamido-2-phenylethylchloromethyl ketone
- TLCK
1-chloro-3-tosylamido-7-amino-l-2-heptanone
- NEM
N-ethylmaleimide
- PCMBS
p-chloromercuriphenylsulfonic acid
- SDS
sodium dodecyl sulfate
- MOPS
morpholinopropane sulfonate
- [I50]
concentration of inhibitor required to give 50% inhibition 相似文献
11.
Teruo Shimmen 《Journal of plant research》2001,114(1):59-66
+ concentration ([K+]o) on the membrane potential (Em) of Chara corallina was studied. Em more negative than -100 mV was maintained even at 100 mM [K+]o. Addition of Ca2+ to the external medium further increased this tendency. However, Em responded sensitively to the increase in [K+]o, when the electrogenic proton pump of the plasma membrane was inhibited by treating cells with dicyclohexylcarbodiimide,
an inhibitor of proton pump. Analysis using equivalent circuit model of the plasma membrane suggested that the electrogenic
proton pump was activated by the increase in [K+]o. In the presence of 100 mM K+, action potentials were generated by electric stimuli. The ionic mechanism of generation of action potentials in the presence
of K+ at high concentration was discussed.
Received 3 October 2000/ Accepted in revised form 6 January 2001 相似文献
12.
A. Edelman C.L. Thil M. Garabédian T. Anagnostopoulos S. Balsan 《生物化学与生物物理学报:生物膜》1983,732(1):300-303
Cell membrane potential, , was monitored in rabbit hypertrophic cartilage metatarsals, amphibian proximal tubule and muscle cells during application of 1,25-dihydroxy vitamin D-3, 25-hydroxy vitamin D-3 or cholesterol (10?10M). 1,25-Dihydroxy vitamin D-3 elicited quick variations of (in less than 1 min) in proximal tubular cells (whether injected in the lumen or in peritubular capillaries) and in cartilage. The precursor 25-hydroxy vitamin D-3 and cholesterol produced a small shift of in proximal tubule only when applied from the luminal side, but this change was significantly smaller than that observed with 1,25-dihydroxy vitamin D-3. Muscle cells were unresponsive to both metabolites and cholesterol. It is concluded that rapid effects of 1,25-dihydroxy vitamin D-3 on , in target cells, are specific, most likely due to permeability changes and not related to nuclear protein synthesis; they may contribute to early modulation of cell function. 相似文献
13.
1. Inhibitor titration experiments carried out with carboxyatractyloside, oligomycin and rotenone show that in the case of heart mitochondria the membrane-bound ATPase and the respiratory chain are the major factors controlling the rate of oxidative phosphorylation whereas the adenine nucleotide carrier exhibits no control strength. 2. As shown by carboxyatractyloside titration curves under different conditions, the relative importance of the adenine nucleotide carrier depends on the mode of regeneration (F1-ATPase or glucose plus hexokinase) of ADP from ATP exported outside mitochondria, on the total concentration of adenine nucleotides present in the medium and on the mode of limitation of the rate of respiration (cyanide, rotenone, oligomycin or mersalyl). 3. Concomitantly with the inhibition of O2 consumption, carboxyatractyloside brings about a rise in membrane potential. The inverse relationship between the two processes is observed for carboxyatractyloside concentrations ranging between 0.7 and 1.5 nmol per mg protein. Carboxyatractyloside concentrations below and above this range increase the membrane potential without affecting significantly the rate of respiration. 4. Titration experiments aimed at comparing the effects of ADP, carboxyatractyloside and the uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, corroborate the conclusion that in heart mitochondria a major limiting factor in oxidative phosphorylation is the capacity of the respiratory chain. 相似文献
14.
Respiration, membrane potential generation and motility of the marine alkalotolerant Vibrio alginolyticus were studied. Subbacterial vesicles competent in NADH oxidation and Δψ generation were obtained. The rate of NADH oxidation by the vesicles was stimulated by Na+ in a fashion specifically sensitive to submicromolar HQNO (2-heptyl-4-hydroxyquinoline N-oxide) concentrations. The same amounts of HQNO completely suppressed the Δψ generation. Δψ was also inhibited by cyanide, gramicidin D and by CCCP + monensin. CCCP (carbonyl cyanide m-chlorophenylhydrazone) added without monensin exerted a much weaker effect on Δψ. Na+ was required to couple NADH oxidation with Δψ generation. These findings are in agreement with the data of Tokuda and Unemoto on Na+-motive NADH oxidase in V. alginolyticus. Motility of V. alginolyticus cells was shown to be (i) Na+-dependent, (ii) sensitive to CCCP + monensin combination, whereas CCCP and monensin, added separately, failed to paralyze the cells, (iii) sensitive to combined treatment by HQNO, cyanide or anaerobiosis and arsenate, whereas inhibition of respiration without arsenate resulted only in a partial suppression of motility. Artificially imposed ΔpNa, i.e., addition of NaCl to the K+-loaded cells paralyzed by HQNO + arsenate, was shown to initiate motility which persisted for several minutes. Monensin completely abolished the NaCl effect. Under the same conditions, respiration-supported motility was only slightly lowered by monensin. The artificially-imposed ΔpH, i.e., acidification of the medium from pH 8.6 to 6.5 failed to activate motility. It is concluded that Δ
Na+ produced by (i) the respiratory chain and (ii) an arsenate-sensitive anaerobic mechanism (presumably by glycolysis + Na+ ATPase) can be consumed by an Na+-motor responsible for motility of V. alginolyticus. 相似文献
15.
31P-NMR has been used to study the increase of ΔpH in mitochondria by externally added ATP. Freshly prepared mitochondria was treated with N-ethylmaleimide to inhibit the exchange between internal and external Pi. Upon addition of ATP, phosphocreatine (30 mM) and creatine kinase to a NMR sample of mitochondria suspension (approx. 120 mg protein/ml) at 0°C, an increase of ΔpH by approx. 0.5 pH unit was observed. However the increased ΔpH could not be maintained, but slowly decayed along with the increase of external ADP/ATP ratio. Further addition of valinomycin to the suspension induced a larger ΔpH (approx. 1) which was maintained by the increased rate of internal ATP hydrolysis as seen in the growth of the internal Pi peak intensity in NMR spectra and the concomitant decrease of the external phosphocreatine peak. The external Pi and ATP peaks stayed virtually constant. When carboxyatractyloside was added to inhibit the ATP/ADP translocase, the internal Pi increase was stopped and the ΔpH decayed. These observations in conjunction with those made earlier in respiring mitochondria clearly show the reversible nature of the ATPase function in which the internal ATP hydrolysis is associated with outward pumping of protons. 相似文献
16.
The displacement current is measured in a suspension of electric field-oriented purple membranes isolated from Halobacterium halobium, the photocycle being driven by a light flash. A simple quantitative theory of the method is presented and used to evaluate the distances the protons move during their way through the bacteriorhodopsin molecules. A lower limit of the velocity of proton movement is also given. 相似文献
17.
Hideto Kuwayama 《生物化学与生物物理学报:生物膜》1988,940(2)
The effect of membrane potential on the activity of the ATP-dependent Ca2+ pump of isolated canine ventricular sarcolemmal vesicles were investigated. The membrane potential was controlled by the intravesicular and extravesicular concentration of K+, and the initial rates of Ca2+ uptake both in the presence and the absence of valinomycin were determined. The rate of Ca2+ uptake was stimulated by a inside-negative potential induced in the presence of valinomycin. The valinomycin-dependent stimulation was enhanced by the addition of K+ channel blocker, tetraethylammonium ion or Ba2+. The electrogenicity of cardiac sarcolemmal ATP-dependent Ca2+ pump is suggested from the increase of Ca2+ uptake by negative potential induced by valinomycin. 相似文献
18.
19.
A fast and sensitive fluorescence image acquisition system is described which uses an ultra-low-light intensifying camera
able to acquire digitised fluorescence images with a time resolution of 3.33 ms/image. Two modes of recording were employed.
The synchronisation mode allowed acquisition of six successive 3.33 ms-images synchronised with an external trigger, while
the memorisation mode allowed acquisition of twelve successive 3.33 ms images starting after a 20 ms-time lag from the external
trigger. Interaction of ethidium bromide (EB) with the membrane of electropermeabilised living cells was studied using this
imaging system. We observed enhanced fluorescence of the dye when associated with electropermeabilised cells. Using single
cells, 3.33 ms-images of the fluorescence interaction patterns of ethidium bromide showed well-defined membrane labelling.
The enhanced fluorescence patterns were shown to represent the electropermeabilised area of the cell membrane. The average
level of fluorescence associated with the labelled part of the cell membrane increased linearly during and immediately (less
than 7 ms) after the electropermeabilisation pulse. Steady-state EB interaction with the membrane was achieved in a maximum
20 ms-time lag after electropermeabilisation. The membrane labelled parts were always observed in the cell regions facing
the electrodes. They were present only when the electric field strength was higher than a threshold value which was different
for the two cell sides. An increase in electric field intensity led to an increase in the dimensions of the labelled cell
region.
Received: 7 August 1997 / Revised version: 14 November 1997 / Accepted: 15 January 1998 相似文献
20.
Subcellular fractionation of tissue in nonaqueous media was employed to study metabolite compartmentation in isolated perfused rat hearts. The mitochondrial and cytosolic concentrations of citrate and 2-oxoglutarate, total concentrations of the glycolytic intermediates and rate of glycolysis were measured in connection with changes in the rate of cellular respiration upon modulation of the ATP consumption by changes of the mechanical work load of the heart. The concentrations of citrate and 2-oxoglutarate in the mitochondria were 16- and 14-fold, respectively, greater than those in the cytosol of beating hearts. The cytosolic citrate concentration was low compared with concentrations which have been employed in demonstrations of the citrate inhibition of glycolysis. In spite of the low activities reported for the tricarboxylate carrier in heart mitochondria, the cytosolic citrate concentration reacted to perturbations of the mitochondrial citrate concentration, and inhibition of glycolysis at the phosphofructokinase step could be observed concomitantly with an increase in the cytosolic citrate concentration. The ΔpH across the inner mitochondrial membrane calculated from the 2-oxoglutarate concentration gradient and the mitochondrial membrane potential calculated from the adenylate distribution gave an electrochemical potential difference of protons compatible with chemiosmotic coupling in the intact myocardium. 相似文献