首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Background: Oncogenes are the genes that have the potential to induce cancer. The extent and origin of codon usage bias is an important indicator of the forces shaping genome evolution in living organisms. Results: We observed moderate correlations between gene expression as measured by CAI and GC content at any codon site. The findings of our results showed that there is a significant positive correlation (Spearman''s r= 0.45, P<0.01) between GC content at first and second codon position with that of third codon position. Further, striking negative correlation (r = -0.771, P < 0.01) between ENC with the GC3s values of each gene and positive correlation (r=0.644, P<0.01) in between CAI and ENC was also observed. Conclusions: The mutation pressure is the major determining factor in shaping the codon usage pattern of oncogenes rather than natural selection since its effects are present at all codon positions. The results revealed that codon usage bias determines the level of oncogene expression in human. Highly expressed oncogenes had rich GC contents with high degree of codon usage bias.  相似文献   

3.
Analysis of synonymous codon usage bias in Chlamydia   总被引:9,自引:0,他引:9  
Chlamydiae are obligate intracellular bacterial pathogens that cause ocular and sexuallytransmitted diseases,and are associated with cardiovascular diseases.The analysis of codon usage mayimprove our understanding of the evolution and pathogenesis of Chlamydia and allow reengineering of targetgenes to improve their expression for gene therapy.Here,we analyzed the codon usage of C.muridarum,C.trachomatis(here indicating biovar trachoma and LGV),C.pneumoniae,and C.psittaci using the codonusage database and the CUSP(Create a codon usage table)program of EMBOSS(The European MolecularBiology Open Software Suite).The results show that the four genomes have similar codon usage patterns,with a strong bias towards the codons with A and T at the third codon position.Compared with Homosapiens,the four chlamydial species show discordant seven or eight preferred codons.The ENC(effectivenumber of codons used in a gene)-plot reveals that the genetic heterogeneity in Chlamydia is constrained bythe G+C content,while translational selection and gene length exert relatively weaker influences.Moreover,mutational pressure appears to be the major determinant of the codon usage variation among the chlamydialgenes.In addition,we compared the codon preferences of C.trachomatis with those of E.coli,yeast,adenovirus and Homo sapiens.There are 23 codons showing distinct usage differences between C.trachomatisand E.coli,24 between C.trachomatis and adenovirus,21 between C.trachomatis and Homo sapiens,butonly six codons between C.trachomatis and yeast.Therefore,the yeast system may be more suitable for theexpression of chlamydial genes.Finally,we compared the codon preferences of C.trachomatis with those ofsix eukaryotes,eight prokaryotes and 23 viruses.There is a strong positive correlation between the differ-ences in coding GC content and the variations in codon bias(r=0.905,P<0,001).We conclude that thevariation of codon bias between C.trachomatis and other organisms is much less influenced by phylogeneticlineage and primarily determined by the extent of disparities in GC content.  相似文献   

4.
The genetic code is degenerate—most amino acids can be encoded by from two to as many as six different codons. The synonymous codons are not used with equal frequency: not only are some codons favored over others, but also their usage can vary significantly from species to species and between different genes in the same organism. Known causes of codon bias include differences in mutation rates as well as selection pressure related to the expression level of a gene, but the standard analysis methods can account for only a fraction of the observed codon usage variation. We here introduce an explicit model of codon usage bias, inspired by statistical physics. Combining this model with a maximum likelihood approach, we are able to clearly identify different sources of bias in various genomes. We have applied the algorithm to Saccharomyces cerevisiae as well as 325 prokaryote genomes, and in most cases our model explains essentially all observed variance.  相似文献   

5.
The effective number of codons used in a gene is a commonly used measure of codon usage. It varies between 20 and 61 (standard genetic code) and indicates to which degree the entire genetic code is used. It is a drawback of this method that it does not take background composition into account. This led Novembre to introduce a variant called Nc' (Novembre JA. 2002. Accounting for background nucleotide composition when measuring codon usage bias. Mol Biol Evol 19:1390-4). In this letter, its properties are under the loupe, with special emphasis on phenomena relating to codon homozygosity. A theoretical misunderstanding regarding this estimator is explained in detail, notably Nc varies between 0 and 61 instead of 20 and 61 (with the standard genetic code). Practical examples from the genome of Pseudomonas aeruginosa are given which demonstrate that the problem is not just theoretical.  相似文献   

6.
The "expression measure" of a gene, E(g), is a statistic devised to predict the level of gene expression from codon usage bias. E(g) has been used extensively to analyze prokaryotic genome sequences. We discuss 2 problems with this approach. First, the formulation of E(g) is such that genes with the strongest selected codon usage bias are not likely to have the highest predicted expression levels; indeed the correlation between E(g) and expression level is weak among moderate to highly expressed genes. Second, in some species, highly expressed genes do not have unusual codon usage, and so codon usage cannot be used to predict expression levels. We outline a simple approach, first to check whether a genome shows evidence of selected codon usage bias and then to assess the strength of bias in genes as a guide to their likely expression level; we illustrate this with an analysis of Shewanella oneidensis.  相似文献   

7.
M Bulmer 《Nucleic acids research》1990,18(10):2869-2873
The effect of neighbouring bases on the usage of synonymous codons in genes with low codon usage bias in yeast and E. coli is examined. The codon adaptation index is employed to identify a group of genes in each organism with low codon usage bias, which are likely to be weakly expressed. A similar pattern is found in complementary sequences with respect to synonymous usage of A vs G or of U vs C. It is suggested that this may reflect an effect of context on mutation rates in weakly expressed genes.  相似文献   

8.
Iriarte A  Baraibar JD  Romero H  Musto H 《Gene》2011,473(2):110-118
Mollicutes are parasitic microorganisms mainly characterized by small cell sizes, reduced genomes and great A and T mutational bias. We analyzed the codon usage patterns of the completely sequenced genomes of bacteria that belong to this class. We found that for many organisms not only mutational bias but also selection has a major effect on codon usage. Through a comparative perspective and based on three widely used criteria we were able to classify Mollicutes according to the effect of selection on codon usage. We found conserved optimal codons in many species and study the tRNA gene pool in each genome. Previous results are reinforced by the fact that, when selection is operative, the putative optimal codons found match the respective cognate tRNA. Finally, we trace selection effect backwards to the common ancestor of the class and estimate the phylogenetic inertia associated with this character. We discuss the possible scenarios that explain the observed evolutionary patterns.  相似文献   

9.
10.
A backtranslation method based on codon usage strategy   总被引:3,自引:0,他引:3       下载免费PDF全文
This study describes a method for the backtranslation of an aminoacidic sequence, an extremely useful tool for various experimental approaches. It involves two computer programs CLUSTER and BACKTR written in Fortran 77 running on a VAX/VMS computer. CLUSTER generates a reliable codon usage table through a cluster analysis, based on a chi 2-like distance between the sequences. BACKTR produces backtranslated sequences according to different options when use is made of the codon usage table obtained in addition to selecting the least ambiguous potential oligonucleotide probes within an aminoacidic sequence. The method was tested by applying it to 158 yeast genes.  相似文献   

11.
12.
Variation in the strength of selected codon usage bias among bacteria   总被引:14,自引:1,他引:14       下载免费PDF全文
Among bacteria, many species have synonymous codon usage patterns that have been influenced by natural selection for those codons that are translated more accurately and/or efficiently. However, in other species selection appears to have been ineffective. Here, we introduce a population genetics-based model for quantifying the extent to which selection has been effective. The approach is applied to 80 phylogenetically diverse bacterial species for which whole genome sequences are available. The strength of selected codon usage bias, S, is found to vary substantially among species; in 30% of the genomes examined, there was no significant evidence that selection had been effective. Values of S are highly positively correlated with both the number of rRNA operons and the number of tRNA genes. These results are consistent with the hypothesis that species exposed to selection for rapid growth have more rRNA operons, more tRNA genes and more strongly selected codon usage bias. For example, Clostridium perfringens, the species with the highest value of S, can have a generation time as short as 7 min.  相似文献   

13.
14.
Codon usage bias (CUB) is a ubiquitous observation in molecular evolution. As a model, Drosophila has been particularly well-studied and indications show that selection at least partially controls codon usage, probably through selection for translational efficiency. Although many aspects of Drosophila CUB have been studied, this is the first study relating codon usage to development in this holometabolous insect with very different life stages. Here we ask the question: What developmental stage of Drosophila melanogaster has the greatest CUB? Genes with maximum expression in the larval stage have the greatest overall CUB when compared with embryos, pupae, and adults. (The same pattern was observed in Drosophila pseudoobscura, see Supplementary Material online.) We hypothesize this is related to the very rapid growth of larvae, placing increased selective pressure to produce large amounts of protein: a 300-fold increase requiring an approximate doubling of protein content every 10 h. Genes with highest expression in adult males and early embryos, stages with the least de novo protein synthesis, display the least CUB. These results are consistent with the hypothesis that CUB is caused (at least in part) by selection for efficient protein production. This seems to hold on the individual gene level (highly expressed genes are more biased than lowly expressed genes) as well as on a more global scale where genes with maximum expression during times of very rapid growth and protein synthesis are more biased than genes with maximum expression during times of low growth.  相似文献   

15.
The FGLamide allatostatins (ASTs) are invertebrate neuropeptides which inhibit juvenile hormone biosynthesis in Dictyoptera and related orders. They also show myomodulatory activity. FGLamide AST nucleotide frequencies and codon bias were investigated with respect to possible effects on mRNA secondary structure. 367 putative FGLamide ASTs and their potential endoproteolytic cleavage sites were identified from 40 species of crustaceans, chelicerates and insects. Among these, 55% comprised only 11 amino acids. An FGLamide AST consensus was identified to be (X)1→16Y(S/A/N/G)FGLGKR, with a strong bias for the codons UUU encoding for Phe and AAA for Lys, which can form strong Watson-Crick pairing in all peptides analyzed. The physical distance between these codons favor a loop structure from Ser/Ala-Phe to Lys-Arg. Other loop and hairpin loops were also inferred from the codon frequencies in the N-terminal motif, and the first amino acids from the C-terminal motif, or the dibasic potential endoproteolytic cleavage site. Our results indicate that nucleotide frequencies and codon usage bias in FGLamide ASTs tend to favor mRNA folds in the codon sequence in the C-terminal active peptide core and at the dibasic potential endoproteolytic cleavage site.  相似文献   

16.
It has been reported earlier that the relative di-nucleotide frequency (RDF) in different parts of a genome is similar while the frequency is variable among different genomes. So RDF is termed as genome signature in bacteria. It is not known if the constancy in RDF is governed by genome wide mutational bias or by selection. Here we did comparative analysis of RDF between the inter-genic and the coding sequences in seventeen bacterial genomes, whose gene expression data was available. The constraint on di-nucleotides was found to be higher in the coding sequences than that in the inter-genic regions and the constraint at the 2nd codon position was more than that in the 3rd position within a genome. Further analysis revealed that the constraint on di-nucleotides at the 2nd codon position is greater in the high expression genes (HEG) than that in the whole genomes as well as in the low expression genes (LEG). We analyzed RDF at the 2nd and the 3rd codon positions in simulated coding sequences that were computationally generated by keeping the codon usage bias (CUB) according to genome G+C composition and the sequence of amino acids unaltered. In the simulated coding sequences, the constraint observed was significantly low and no significant difference was observed between the HEG and the LEG in terms of di-nucleotide constraint. This indicated that the greater constraint on di-nucleotides in the HEG was due to the stronger selection on CUB in these genes in comparison to the LEG within a genome. Further, we did comparative analyses of the RDF in the HEG rpoB and rpoC of 199 bacteria, which revealed a common pattern of constraints on di-nucleotides at the 2nd codon position across these bacteria. To validate the role of CUB on di-nucleotide constraint, we analyzed RDF at the 2nd and the 3rd codon positions in simulated rpoB/rpoC sequences. The analysis revealed that selection on CUB is an important attribute for the constraint on di-nucleotides at these positions in bacterial genomes. We believe that this study has come with major findings of the role of CUB on di-nucleotide constraint in bacterial genomes.  相似文献   

17.
The mitotic checkpoint (also called spindle assembly checkpoint, SAC) is a signaling pathway that safeguards proper chromosome segregation. Correct functioning of the SAC depends on adequate protein concentrations and appropriate stoichiometries between SAC proteins. Yet very little is known about the regulation of SAC gene expression. Here, we show in the fission yeast Schizosaccharomyces pombe that a combination of short mRNA half‐lives and long protein half‐lives supports stable SAC protein levels. For the SAC genes mad2 + and mad3 +, their short mRNA half‐lives are caused, in part, by a high frequency of nonoptimal codons. In contrast, mad1 + mRNA has a short half‐life despite a higher frequency of optimal codons, and despite the lack of known RNA‐destabilizing motifs. Hence, different SAC genes employ different strategies of expression. We further show that Mad1 homodimers form co‐translationally, which may necessitate a certain codon usage pattern. Taken together, we propose that the codon usage of SAC genes is fine‐tuned to ensure proper SAC function. Our work shines light on gene expression features that promote spindle assembly checkpoint function and suggests that synonymous mutations may weaken the checkpoint.  相似文献   

18.
Subramanian S 《Genetics》2008,178(4):2429-2432
Here I show that the mean codon usage bias of a genome, and of the lowly expressed genes in a genome, is largely similar across eukaryotes ranging from unicellular protists to vertebrates. Conversely, this bias in housekeeping genes and in highly expressed genes has a remarkable inverse relationship with species generation time that varies by more than four orders of magnitude. The relevance of these results to the nearly neutral theory of molecular evolution is discussed.  相似文献   

19.
We present a likelihood method for estimating codon usage bias parameters along the lineages of a phylogeny. The method is an extension of the classical codon-based models used for estimating dN/dS ratios along the lineages of a phylogeny. However, we add one extra parameter for each lineage: the selection coefficient for optimal codon usage (S), allowing joint maximum likelihood estimation of S and the dN/dS ratio. We apply the method to previously published data from Drosophila melanogaster, Drosophila simulans, and Drosophila yakuba and show, in accordance with previous results, that the D. melanogaster lineage has experienced a reduction in the selection for optimal codon usage. However, the D. melanogaster lineage has also experienced a change in the biological mutation rates relative to D. simulans, in particular, a relative reduction in the mutation rate from A to G and an increase in the mutation rate from C to T. However, neither a reduction in the strength of selection nor a change in the mutational pattern can alone explain all of the data observed in the D. melanogaster lineage. For example, we also confirm previous results showing that the Notch locus has experienced positive selection for previously classified unpreferred mutations.  相似文献   

20.
转座因子对水稻同义密码子使用偏性的影响   总被引:1,自引:0,他引:1  
利用635个包含完整转座因子插入的粳稻CDS序列,对转座因子如何影响基因编码区的碱基组成及基因的表达水平,进而对基因同义密码子的使用偏性产生影响进行了详细分析。结果表明:转座因子插入极显著地影响到基因编码区的同义密码子使用但并非唯一因素;转座因子对不同基因的表达水平具有多重影响,有的基因表达被抑制,有的反而增强,但总的来说它减少了基因表达水平对同义密码子使用的影响程度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号