首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The Neurospora CYT-18 protein, a tyrosyl-tRNA synthetase, which functions in splicing group I introns in mitochondria, promotes splicing of mutants of the distantly related bacteriophage T4 td intron. In an in vivo assay, wild-type CYT-18 protein expressed in E. coli suppressed mutations in the td intron's catalytic core. CYT-18-suppressible mutations were also suppressed by high Mg2+ or spermidine in vitro, suggesting they affect intron structure. Both the N- and C-terminal domains of CYT-18 are required for efficient splicing, but CYT-18 with a large C-terminal truncation retains some activity. Our results indicate that CYT-18 interacts with conserved structural features of group I introns, and they provide direct evidence that a protein promotes splicing by stabilizing the catalytically active structure of the intron RNA.  相似文献   

2.
3.
Sequence requirements of the hammerhead RNA self-cleavage reaction.   总被引:51,自引:0,他引:51  
A previously well-characterized hammerhead catalytic RNA consisting of a 24-nucleotide substrate and a 19-nucleotide ribozyme was used to perform an extensive mutagenesis study. The cleavage rates of 21 different substrate mutations and 24 different ribozyme mutations were determined. Only one of the three phylogenetically conserved base pairs but all nine of the conserved single-stranded residues in the central core are needed for self cleavage. In most cases the mutations did not alter the ability of the hammerhead to assemble into a bimolecular complex. In the few cases where mutant hammerheads did not assemble, it appeared to be the result of the mutation stabilizing an alternate substrate or ribozyme secondary structure. All combinations of mutant substrate and mutant ribozyme were less active than the corresponding single mutations, suggesting that the hammerhead contains few, if any, replaceable tertiary interactions as are found in tRNA. The refined consensus hammerhead resulting from this work was used to identify potential hammerheads present in a variety of Escherichia coli gene sequences.  相似文献   

4.
Mutations in a semiconserved region of the Tetrahymena intron   总被引:1,自引:0,他引:1  
U Pace  J W Szostak 《FEBS letters》1991,280(1):171-174
The A-rich bulge in paired region P5a of the Tetrahymena intron is a structural feature that is conserved in the sub-group Ib self-splicing introns. We have constructed a series of substitution and deletion mutations in this region of the intron. Kinetic analysis has shown that some of the mutants have a reduced maximal extent of splicing, while others have a reduced Vmax. These mutations could be reactivated to a great extent by spermidine and high Mg2+ concentrations. These data are consistent with the hypothesis that the A-rich bulge of P5a has a role in stabilizing the higher-level structure of the ribozyme.  相似文献   

5.
6.
Recent crystallographic and functional analyses of RNA enzymes have raised the possibility that the purine and pyrimidine nucleobases may function as general acid-base catalysts. However, this mode of nucleobase-mediated catalysis has been difficult to establish unambiguously. Here, we used a hyperactivated RNA substrate bearing a 5'-phosphorothiolate to investigate the role of a critical cytosine residue in the hepatitis delta virus ribozyme. The hyperactivated substrate specifically suppressed the deleterious effects of cytosine mutations and pH changes, thereby linking the protonation of the nucleobase to leaving-group stabilization. We conclude that the active-site cytosine provides general acid catalysis, mediating proton transfer to the leaving group through a protonated N3-imino nitrogen. These results establish a specific role for a nucleobase in a ribozyme reaction and support the proposal that RNA nucleobases may function in a manner analogous to that of catalytic histidine residues in protein enzymes.  相似文献   

7.
The mechanism by which group II introns cleave the correct phosphodiester linkage was investigated by studying the reaction of mutant substrates with a ribozyme derived from intron ai5gamma. While fidelity was found to be quite high in most cases, a single mutation on the substrate (+1C) resulted in a dramatic loss of fidelity. When this mutation was combined with a second mutation that induces a bulge in the exon binding site 1/intron binding site 1 (EBS1/IBS1) duplex, the base-pairing register of the EBS1/IBS1 duplex was shifted and the cleavage site moved to a downstream position on the substrate. Conversely, when mismatches were incorporated at the EBS1/IBS1 terminus, the duplex was effectively truncated and cleavage occurred at an upstream site. Taken together, these data demonstrate that the cleavage site of a group II intron ribozyme can be tuned at will by manipulating the thermodynamic stability and structure of the EBS1/IBS1 pairing. The results are consistent with a model in which the cleavage site is not designated through recognition of specific nucleotides (such as the 5'-terminal residue of EBS1). Instead, the ribozyme detects a structure at the junction between single and double-stranded residues on the bound substrate. This finding explains the puzzling lack of phylogenetic conservation in ribozyme and substrate sequences near group II intron target sites.  相似文献   

8.
The wildtype Tetrahymena ribozyme cannot catalyze detectable levels of phosphotransfer activity in vitro on an exogenous RNA substrate oligonucleotide when calcium(II) is supplied as the only available divalent ion. Nevertheless, low-error mutants of this ribozyme have been acquired through directed evolution that do have activity in 10 mM CaCl2. The mechanisms for such Ca(II) accommodation are not known. Here, we assayed the entire molecule in an effort to identify the roles of the mutations in allowing catalytic activity in Ca(II). We used four biochemical probing techniques - native-gel electrophoresis, hydroxyl radical footprinting, terbium(III) cleavage footprinting, and phosphorothioate interference mapping - to compare the solution structure of the wildtype ribozyme with that of a Ca(II)-active five-site mutant. We compared the gross folding patterns and specific metal-binding sites in both MgCl2 and CaCl2 solutions. We detected no large-scale folding differences between the two RNAs in either metal. However, we did discover a limited number of local folding differences, involving regions of the RNA affected by positions 42, 188, and 270. These data support the notion that Ca(II) is accommodated by the Tetrahymena ribozyme by a slight breathing at the active site, but that alterations at, near to, and distal from the active site can all contribute to Ca(II)-based activity.  相似文献   

9.
Guo F  Gooding AR  Cech TR 《Molecular cell》2004,16(3):351-362
The Tetrahymena intron is an RNA catalyst, or ribozyme. As part of its self-splicing reaction, this ribozyme catalyzes phosphoryl transfer between guanosine and a substrate RNA strand. Here we report the refined crystal structure of an active Tetrahymena ribozyme in the absence of its RNA substrate at 3.8 A resolution. The 3'-terminal guanosine (omegaG), which serves as the attacking group for RNA cleavage, forms a coplanar base triple with the G264-C311 base pair, and this base triple is sandwiched by three other base triples. In addition, a metal ion is present in the active site, contacting or positioned close to the ribose of the omegaG and five phosphates. All of these phosphates have been shown to be important for catalysis. Therefore, we provide a picture of how the ribozyme active site positions both a catalytic metal ion and the nucleophilic guanosine for catalysis prior to binding its RNA substrate.  相似文献   

10.
Compensatory mutations in RNA are generally regarded as those that maintain base pairing, and their identification forms the basis of phylogenetic predictions of RNA secondary structure. However, other types of compensatory mutations can provide higher-order structural and evolutionary information. Here, we present a helix-length compensation study for investigating structure-function relationships in RNA. The approach is demonstrated for stem-loop I and stem-loop V of the Neurospora VS ribozyme, which form a kissing-loop interaction important for substrate recognition. To rapidly characterize the substrate specificity (k(cat)/K(M)) of several substrate/ribozyme pairs, a procedure was established for simultaneous kinetic characterization of multiple substrates. Several active substrate/ribozyme pairs were identified, indicating the presence of limited substrate promiscuity for stem Ib variants and helix-length compensation between stems Ib and V. 3D models of the I/V interaction were generated that are compatible with the kinetic data. These models further illustrate the adaptability of the VS ribozyme architecture for substrate cleavage and provide global structural information on the I/V kissing-loop interaction. By exploring higher-order compensatory mutations in RNA our approach brings a deeper understanding of the adaptability of RNA structure, while opening new avenues for RNA research.  相似文献   

11.
Aminoglycoside antibiotics inhibit several types of ribozymes, including group I introns, by displacing critical Mg2+ ions. However, they stimulate activity of the small hairpin ribozyme. We show here that aminoglycosides promote self-splicing of the Cr.psbA2 group I intron at subthreshold Mg2+ concentrations. Neomycin is the most effective of the aminoglycosides tested; it stimulates splicing of Cr.psbA2 at micromolar concentrations, and, in this respect, is >100-fold more effective than spermidine. At optimal Mg2+ for Cr.psbA2 splicing, these drugs, especially kanamycin B and tobramycin, promote GTP attack at the 3' splice-site. Kinetic analysis suggests that this is due to an alternatively folded state of the ribozyme that is induced, or stabilized, by aminoglycosides. A similar effect is observed at high Mg2+ concentrations. Comparing the effects of structurally related aminoglycosides indicates that splicing promotion is more sensitive to drug structure than misfolding and occurs at lower drug concentrations. These data show that aminoglycosides can promote biochemical activities of a large ribozyme by acting as a Mg2+ mimic. The results also underscore the functional diversity of group I introns in nature.  相似文献   

12.
K S Jeng  A Daniel    M M Lai 《Journal of virology》1996,70(4):2403-2410
The ribozymes of hepatitis delta virus (HDV) have so far been studied primarily in vitro. Several structural models for HDV ribozymes based on truncated HDV RNA fragments, which are different from the hammerhead or the hairpin/paperclip ribozyme model proposed for plant viroid or virusoid RNAs, have been proposed. Whether these structures actually exist in vivo and whether ribozymes actually function in the HDV replication cycle have not been demonstrated. We have now developed an in vivo ribozyme self-cleavage assay capable of detecting self-cleavage of dimer or trimer HDV RNA in vivo. By site-directed mutagenesis and compensatory mutations to disrupt and restore potential base pairing in the ribozyme domain of the full-length HDV RNA according to the various structural models, a close correlation between the detected in vivo and the predicted in vitro ribozyme activities of various mutant RNAs was demonstrated. These results suggest that the proposed in vitro ribozyme structure likely exists and functions during the HDV replication cycle in vivo. Furthermore, the pseudoknot model most likely represents the structure responsible for the ribozyme activity in vivo. All of the mutants that had lost the ribozyme activity could not replicate, indicating that the ribozyme activities are indeed required for HDV RNA replication. However, some of the compensatory mutants which have restored both the cleavage and ligation activities could not replicate, suggesting that the ribozyme domains are also involved in other unidentified functions or in the formation of an alternative structure that is required for HDV RNA replication. This study thus established that the ribozyme has important biological functions in the HDV life cycle.  相似文献   

13.
A self-cleaving RNA sequence from hepatitis delta virus was modified to produce a ribozyme capable of catalyzing the cleavage of RNA in an intermolecular (trans) reaction. The delta-derived ribozyme cleaved substrate RNA at a specific site, and the sequence specificity could be altered with mutations in the region of the ribozyme proposed to base pair with the substrate. A substrate target size of approximately 8 nucleotides in length was identified. Octanucleotides containing a single ribonucleotide immediately 5' to the cleavage site were substrates for cleavage, and cleavage activity was significantly reduced only with a guanine base at that position. A deoxyribose 5' to the cleavage site blocked the reaction. These data are consistent with a proposed secondary structure for the self-cleaving form of the hepatitis delta virus ribozyme in which a duplex forms with sequences 3' to the cleavage site, and they support a proposed mechanism in which cleavage involves attack on the phosphorus at the cleavage site by the adjacent 2'-hydroxyl group.  相似文献   

14.
In vitro selection experiments have been used to isolate active variants of the 50 nt hairpin catalytic RNA motif following randomization of individual ribozyme domains and intensive mutagenesis of the ribozyme-substrate complex. Active and inactive variants were characterized by sequencing, analysis of RNA cleavage activity in cis and in trans, and by substrate binding studies. Results precisely define base-pairing requirements for ribozyme helices 3 and 4, and identify eight essential nucleotides (G8, A9, A10, G21, A22, A23, A24 and C25) within the catalytic core of the ribozyme. Activity and substrate binding assays show that point mutations at these eight sites eliminate cleavage activity but do not significantly decrease substrate binding, demonstrating that these bases contribute to catalytic function. The mutation U39C has been isolated from different selection experiments as a second-site suppressor of the down mutants G21U and A43G. Assays of the U39C mutation in the wild-type ribozyme and in a variety of mutant backgrounds show that this variant is a general up mutation. Results from selection experiments involving populations totaling more than 10(10) variants are summarized, and consensus sequences including 16 essential nucleotides and a secondary structure model of four short helices, encompassing 18 bp for the ribozyme-substrate complex are derived.  相似文献   

15.
Group II introns are self-splicing RNA molecules that also behave as mobile genetic elements. The secondary structure of group II intron RNAs is typically described as a series of six domains that project from a central wheel. Most structural and mechanistic analyses of the intron have focused on domains 1 and 5, which contain the residues essential for catalysis, and on domain 6, which contains the branch-point adenosine. Domains 2 and 3 (D2, D3) have been shown to make important contributions to intronic activity; however, information about their function is quite limited. To elucidate the role of D2 and D3 in group II ribozyme catalysis, we built a series of multi-piece ribozyme constructs based on the ai5gamma group II intron. These constructs are designed to shed light on the roles of D2 and D3 in some of the major reactions catalyzed by the intron: 5'-exon cleavage, branching, and substrate hydrolysis. Reactions with these constructs demonstrate that D3 stimulates the chemical rate constant of group II intron reactions, and that it behaves as a form of catalytic effector. However, D3 is unable to associate independently with the ribozyme core. Docking of D3 is mediated by a short duplex that is found at the base of D2. In addition to recruiting D3 into the core, the D2 stem directs the folding of the adjacent j(2/3) linker, which is among the most conserved elements in the group II intron active site. In turn, the D2 stem contributes to 5'-splice site docking and ribozyme conformational change. Nucleotide analog interference mapping suggests an interaction between the D2 stem and D3 that builds on the known theta-theta' interaction and extends it into D3. These results establish that D3 and the base of D2 are key elements of the group II intron core and they suggest a hierarchy for active-site assembly.  相似文献   

16.
D Herschlag 《Biochemistry》1992,31(5):1386-1399
J1/2 of the Tetrahymena ribozyme, a sequence of three A residues, connects the RNA-binding site to the catalytic core. Addition or deletion of bases from J1/2 improves turnover and substrate specificity in the site-specific endonuclease reaction catalyzed by this ribozyme: G2CCCUCUA5 (S) + G in-equilibrium G2CCCUCU (P) + GA5. These paradoxical enhancements are caused by decreased affinity of the ribozyme for S and P [Young, B., Herschlag, D., & Cech, T.R. (1991) Cell 67, 1007]. An additional property of these mutant ribozymes, decreased fidelity of RNA cleavage, is now analyzed. (Fidelity is the ability to cleave at the correct phosphodiester bond within a particular RNA substrate.) Introduction of deoxy residues to give "chimeric" ribo/deoxyribooligonucleotides changes the positions of incorrect cleavage. Previous work indicated that S is bound to the ribozyme by both base pairing and teritary interactions involving 2'-hydroxyl groups of S. The data herein strongly suggest that the P1 duplex, which consists of S base-paired with the 5' exon binding site of the ribozyme, can dock into tertiary interactions in different registers; different 2'-hydroxyl groups of S plug into tertiary contacts with the ribozyme in the different registers. It is concluded that the mutations decrease fidelity by increasing the probability of docking out of register relative to docking in the normal register, thereby giving cleavage at different positions along S. These data also show that the contribution of J1/2 to the teritiary interactions is indirect, not direct. Thus, a structural role of the nonconserved J1/2 is indicated: this sequence positions S to optimize tertiary binding interactions and to ensure cleavage at the phosphodiester bond corresponding to the 5' splice site. Substitution of sulfur for the nonbridging pro-RP oxygen atom at the normal cleavage site has no effect on (kcat/Km)S but decreases the fraction of cleavage at the normal site in reactions catalyzed by the -3A mutant ribozyme, which has all three A residues of J1/2 removed. Thus, the ribozyme chooses where to cleave S after rate-limiting binding of S, indicating that docking can change after binding and suggesting that the ribozyme could act processively. Indeed, it is shown that the +2A ribozyme cleaves at one position along an RNA substrate and then, before releasing that RNA product, cleaves it again.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
18.
Zarrinkar PP  Sullenger BA 《Biochemistry》1999,38(11):3426-3432
Group I ribozymes can repair mutant RNAs via trans-splicing. Unfortunately, substrate specificity is quite low for the trans-splicing reaction catalyzed by the group I ribozyme from Tetrahymenathermophila. We have used a systematic approach based on biochemical knowledge of the function of the Tetrahymena ribozyme to optimize its ability to discriminate against nonspecific substrates in vitro. Ribozyme derivatives that combine a mutation which indirectly slows down the rate of the chemical cleavage step by weakening guanosine binding with additional mutations that weaken substrate binding have greatly enhanced specificity with short oligonucleotide substrates and an mRNA fragment derived from the p53 gene. Moreover, compared to the wild-type ribozyme, reaction of a more specific ribozyme with targeted substrates is much less sensitive to the presence of nonspecific RNA competitors. These results demonstrate how a detailed understanding of the biochemistry of a catalytic RNA can facilitate the design of customized ribozymes with improved properties for therapeutic applications.  相似文献   

19.
The hairpin ribozyme is a small endonucleolytic RNA motif with potential for targeted RNA inactivation. It optimally cleaves substrates containing the sequence 5'-GU-3' immediately 5' of G. Previously, we have shown that tertiary structure docking of its two domains is an essential step in the reaction pathway of the hairpin ribozyme. Here we show, combining biochemical and fluorescence structure and function probing techniques, that any mutation of the substrate base U leads to a docked RNA fold, yet decreases cleavage activity. The docked mutant complex shares with the wild-type complex a common interdomain distance as measured by time-resolved fluorescence resonance energy transfer (FRET) as well as the same solvent-inaccessible core as detected by hydroxyl-radical protection; hence, the mutant complex appears nativelike. FRET experiments also indicate that mutant docking is kinetically more complex, yet with an equilibrium shifted toward the docked conformation. Using 2-aminopurine as a site-specific fluorescent probe in place of the wild-type U, a local structural rearrangement in the substrate is observed. This substrate straining accompanies global domain docking and involves unstacking of the base and restriction of its conformational dynamics, as detected by time-resolved 2-aminopurine fluorescence spectroscopy. These data appear to invoke a mechanism of functional interference by a single base mutation, in which the ribozyme-substrate complex becomes trapped in a nativelike fold preceding the chemical transition state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号