首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sex differences in n-3 and n-6 fatty acid metabolism in EFA-depleted rats   总被引:1,自引:0,他引:1  
We studied the effect of sex on the distribution of long-chain n-3 and n-6 fatty acids in essential fatty acid-deficient rats fed gamma-linolenate (GLA) concentrate and/or eicosapentaenoate and docosahexaenoate-rich fish oil (FO). Male and female weanling rats were rendered essential fatty acid deficient by maintaining them on a fat-free semisynthetic diet for 8 weeks. Thereafter, animals of each sex were separated into three groups (n = 6) and given, for 2 consecutive days by gastric intubation, 4 g/kg body wt per day of GLA concentrate (containing 84% 18:2n-6), n-3 fatty acid-rich FO (containing 18% 20:5n-3 and 52% 22:6n-3), or an equal mixture of the two oil preparations (GLA + FO). The fatty acid distributions in plasma and liver lipids were then examined. GLA treatment increased the levels of C-20 and C-22 n-6 fatty acids in all lipid fractions indicating that GLA was rapidly metabolized. However, the increases in 20:3n-6 were less in females than those in males, while those in 20:4n-6 were greater, suggesting that the conversion of 20:3n-6 to 20:4n-6 was more active in female than in male rats. FO treatment increased the levels of 20:5n-3 and 22:6n-3 and reduced those of 20:4n-6. The increase in n-3 fatty acids was greater in females than that in males and the reduction in 20:4n-6 was smaller. Consequently, the sum of total long-chain EFAs incorporated was greater in females than that in males. The administration of n-3 fatty acids also reduced the ratio of 20:4n-6 to 20:3n-6 in GLA + FO-treated rats indicating that n-3 fatty acids inhibited the activity of delta-5-desaturase. However, this effect was not affected by the sex difference.  相似文献   

2.
We have studied the effects of semisynthetic diets containing 5% by weight (12% of the energy) of either olive oil (70% oleic acid, OA) or corn oil (58% linoleic acid), or fish oil (Max EPA, containing about 30% eicosapentaenoic, EPA C 20:5 n-3, plus docosahexaenoic, DHA C 22:6 n-3, acids, and less than 2% linoleic acid), fed to male rabbits for a period of five weeks, on plasma and platelet fatty acids and platelet thromboxane formation. Aim of the study was to quantitate the absolute changes of n-6 and n-3 fatty acid levels in plasma and platelet lipid pools after dietary manipulations and to correlate the effects on eicosanoid-precursor fatty acids with those on platelet thromboxane formation. The major differences were found when comparing the group fed fish oil and depleted linoleic acid vs the other groups. The accumulation of n-3 fatty acids in various lipid classes was associated with modifications in the distribution of linoleic acid and arachidonic acid in different lipid pools. In platelets maximal incorporation of n-3 fatty acids occurred in phosphatidyl ethanolamine, which also participated in most of the total arachidonic acid reduction occurring in platelets, and linoleic acid, more than archidonic acid, was replaced by n-3 fatty acids in various phospholipids. The archidonic acid content of phosphatidyl choline was unaffected and that of phosphatidyl inositol only marginally reduced. Thromboxane formation by thrombin stimulated platelets did not differ among the three groups, and this may be related to the minimal changes of arachidonic acid in phosphatidyl choline and phosphatidyl inositol.  相似文献   

3.
The plasma cholesterol, plasma malonaldehyde (MDA), platelet thromboxane A2 (TXA2) and vascular prostacyclin (PGI2) were measured in male Sprague-Dawley rats fed diets supplemented with cholesterol (1%) and cholic acid (0.5%). For comparisons, measurements were made in rats fed normal diets. The concentration of cholesterol in the plasma of rats had reached a maximum in 1 week of feeding experimental diets. TXA2 production from collagen and thrombin stimulated platelets was significantly decreased in animals fed experimental diets for 1 week. The production of MDA in the plasma of animals fed experimental diets for 8 weeks was significantly lower compared to the animals fed normal diets. There was a small but significant reduction in the formation of PGI2 in rats fed experimental diets for 8 weeks. These data suggest that feeding cholesterol rich diets to rats alters the platelet membrane properties differently from human and rabbit. Furthermore, cholesterol feeding to rats had some damaging effect on the arterial PGI2 synthesis.  相似文献   

4.
The effects of feeding n-6 and n-3 fatty acids to broiler hens on cardiac ventricle fatty acid composition, and prostaglandin E2 (PGE2) and thromboxane A2 (TXA2) production of hatched chicks were investigated. Fertile eggs obtained from hens fed diets supplemented with 3.5% sunflower oil (Low n-3), 1.75% sunflower+1.75% fish oil (Medium n-3), or 3.5% fish oil (High n-3) were incubated. The hatched chicks were fed a diet containing 18:3 n-3, but devoid of longer chain n-6 and n-3 fatty acids for 42 days. Arachidonic acid content was lower in the cardiac ventricle of High n-3 and Medium n-3 compared to Low n-3 birds for up to 2 weeks (P<0.002). Long chain n-3 fatty acids were higher in the cardiac ventricle of chicks from hens fed High and Medium n-3 diets when compared to chicks from hens fed the Low n-3 diet. Differences in long chain n-3 fatty acids persisted up to four weeks of age (P<0.001). Peripheral blood mononuclear cells (PBMNC) of 7-day-old High n-3 broilers produced significantly lower PGE2 and TXA2 than PBMNC from Low n-3 and Medium n-3 birds. These results indicate that maternal dietary n-3 fatty acids increases cardiac ventricle n-3 fatty acids while reducing arachidonic acid and ex vivo PGE2 and TXA2 production during growth in broiler chickens.  相似文献   

5.
Essential fatty acid deficient male Sprague Dawley rats were fed for 7 days a fat-free semi-synthetic diet supplemented with 10% by weight of different oil supplements. The oil supplement was a mixture of olive, safflower and linseed oils prepared at different proportions so the dietary n-9/n-6/n-3 ratios were approximate 2/1/1, 1/2/1, 1/1/2, and 1/1/1. The fatty acid compositions of plasma and liver lipids were then examined. Our results show polyunsaturated n-6 and n-3 fatty acids were selectively incorporated into plasma and liver phospholipids, and also into plasma cholesteryl esters. A preferential incorporation of n-6 over n-3 fatty acids into plasma cholesteryl esters and phospholipids was also observed.  相似文献   

6.
Two separate experiments examining the effects of calcium deficiency on plasma and liver fatty acids in rats were conducted. In Experiment I, weanling male Sprague-Dawley rats were fed a calcium-deficient diet with or without the supplementation of 5 or 20 g/kg calcium for 22 days. There were no significant differences in plasma and liver fatty acid distribution between the two calcium-supplemented groups. However, calcium deficiency significantly elevated the levels of 18:3n-6 in plasma and liver cholesteryl esters and liver phospholipids, while it reduced the levels of 20:3n-6 in plasma cholesteryl esters. In Experiment II, weanling rats were fed a calcium-deficient diet supplemented with 5 g/kg calcium for 22 days. After overnight fast, animals were given by intragastric feeding a dose of 4 g/kg body wt gamma-linolenic acid concentrate (containing 92% 18:3n-6 ethyl ester), and were killed 22 hr later. The levels of 18:3n-6 were significantly higher, whereas the levels of 20:3n-6 were either not changed or lower than those in calcium-supplemented group. In both experiments, the ratios of (20:3n-6 + 20:4n-6)/18:3n-6 in plasma and liver lipids were significantly reduced in calcium-deficient rats. These results suggest that calcium may play an important and specific role in the process of elongation of 18:3n-6 to 20:3n-6.  相似文献   

7.
Platelets from vitamin E-deficient and vitamin E-supplemented rats generate the same amount fo thromboxane A2 (TxA2) when they are incubated with unesterified arachidonic acid. Platelets from vitamin E-deficient rats produce more TxA2 than platelets from vitamin E-supplemented rats when the platelets are challenged with collagen. Arterial tissue from vitamin E-deficient rats generates less prostacyclin (PGI2) than arterial tissue from vitamin E-supplemented rats. The vitamin E effect with arterial tissue is observed when the tissue is incubated with and without added unesterified arachidonic acid. These data show that arterial prostacyclin synthesis is diminished in vitamin E-deficient rats. Vitamin E, invivo, inhibits platelet aggregation both by lowering platelet TxA2 and by raising arterial PGI2.  相似文献   

8.
The objective of these studies with rat hepatocytes in primary culture was to establish that: (a) membrane phospholipids would become enriched with the specific fatty acid supplemented to the media and (b) hepatocyte monolayer triacylglycerol synthetic rates were dependent on the type of fatty acid enrichment of the membrane phospholipids. Hepatocytes cultured in the absence of media lipid developed a phospholipid fatty acid composition which is indicative of an essential fatty acid deficiency. The extensive rise in 18:1(n - 9) content indicated that delta 9-desaturase was active. The fatty acid composition of phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol in the microsomal- and mitochondrial-enriched fractions was highly dependent upon the type of fatty acid supplemented to the medium. Incorporation of fatty acids into phospholipids was rapid, and a new steady-state in fatty acid composition was achieved within approx. 36 h. Changes in the fatty acid composition of these hepatocyte phospholipid subclasses resulting from media supplementation with 18:2/20:4(n-6) or 20:5(n-3) were similar, but not identical, to changes which occurred in vivo as a result of consuming diets rich in 18:2(n-6) or 20:5(n-3). Hepatocyte lipogenesis was highly dependent upon the type of fatty acid supplemented to the medium. Prior conditioning with 16:0 increased triacylglycerol synthesis and secretion. Secretion of triacylglycerol was reduced by polyenoic fatty acid enrichment with 20:5(n-3) greater than 20:4/18:2(n-6). The suppression of triacylglycerol synthesis by 20:5(n-3) was due to an increased (P less than 0.05) diacylglycerol specific activity, which indicates that 20:5(n-3) suppression of hepatic triacylglycerol production may be caused in part by the inhibition of diacylglycerol acyltransferase.  相似文献   

9.
The effects of dietary cholesterol (CH) and isolation stress on fatty acid compositions of plasma and liver cholesteryl ester and phospholipids were compared in growing rats fed an 18:2n-6 or an 18:3n-6 enriched semisynthetic diet for 2 weeks. Stress, CH-feeding, and dietary fats had no significant effects on plasma CH level, but CH-feeding alone elevated the liver CH concentrations. CH-feeding also modulated the liver polyunsaturated fatty acid compositions, i.e., increasing 18:2n-6 levels, and reducing 20:4n-6 levels, indicating an inhibition of the enzymes, delta-6 and delta-5-desaturases. The extent of these changes was less in rats fed 18:3n-6 than in those fed 18:2n-6. Stress, which alone had no significant effects on plasma and liver fatty acid compositions, attenuated the CH-induced changes of fatty acid levels.  相似文献   

10.
The administration to male rats of 5 en % fish oil (FO) as supplement to a diet containing 5 en % corn oil (CO), selectively and markedly decreased arterial parameters (6-keto-PGF formation and platelet antiaggregatory activity) assessed in isolated aortic segments perfused with autologous platelet rich plasma (PRP). Platelet parameters (ADP-induced aggregation, TxB2 formation in thrombin-stimulated PRP and sensitivity to exogenous PGI2) were instead minimally affected. Eicosapentaenoic acid (EPA, 20:5 n-3) did not accumulate in plasma, platelet and aorta lipids and arachidonic acid (AA, 20:4 n-6) levels declined markedly only in the plasma compartment. When FO was given alone at the same 5 en % level, both arterial and platelet parameters were similarly affected. EPA accumulated in plasma cholesterol esters and was present in appreciable concentrations also in platelets and aortic walls. AA levels declined markedly in plasma lipids and appreciably also in platelet and aorta lipids. It is concluded that a) arterial and platelet parameters are differentially affected by FO administration depending upon the presence of n-6 polyunsaturated fatty acids in the diet, b) 6-keto-PGF production by arterial tissues does not seem to be related to changes of PG precursor fatty acid levels in the phospholipid fraction.  相似文献   

11.
The administration to male rats of 5 en % fish oil (FO) as supplement to a diet containing 5 en % corn oil (CO), selectively and markedly decreased arterial parameters (6-keto-PGF1 alpha formation and platelet antiaggregatory activity) assessed in isolated aortic segments perfused with autologous platelet rich plasma (PRP). Platelet parameters (ADP-induced aggregation, TxB2 formation in thrombin-stimulated PRP and sensitivity to exogenous PGI2) were instead minimally affected. Eicosapentaenoic acid (EPA, 20:5 n-3) did not accumulate in plasma, platelet and aorta lipids and arachidonic acid (AA, 20:4 n-6) levels declined markedly only in the plasma compartment. When FO was given alone at the same 5 en % level, both arterial and platelet parameters were similarly affected. EPA accumulated in plasma cholesterol esters and was present in appreciable concentrations also in platelets and aortic walls. AA levels declined markedly in plasma lipids and appreciably also in platelet and aorta lipids. It is concluded that a) arterial and platelet parameters are differentially affected by FO administration depending upon the presence of n-6 polyunsaturated fatty acids in the diet, b) 6-keto-PGF1 alpha production by arterial tissue does not seem to be related to changes of PG precursor fatty acid levels in the phospholipid fraction.  相似文献   

12.
13.
Dietary fat supplementation can improve oocyte quality in ruminants. The influence of the type of dietary fat on the number and quality of oocytes collected by ovum pick-up and on the production of embryos in vitro was investigated in Holstein heifers. Heifers were given hay plus one of two dietary supplements for 42 days. The supplements were linseed (L, rich in linolenic acid, C18:3n-3, n = 9) or soya bean (S, rich in linoleic acid, C18:2n-6, n = 9). Oocytes were collected by ovum pick-up (OPU) for 6 wks (2 sessions/wk) and morphologic quality assessed. Half the oocytes were frozen and the other half was used to produce embryos. Blood samples were analyzed for: insulin, insulin-like growth factor-1, glucose, non-esterified fatty acids, β-hydroxy butyrate and urea and the proportions of fatty acids. Neither growth rate nor plasma hormone and metabolite concentrations were affected by dietary supplement. However, L significantly increased the proportion of plasma C18:3n-3 while S significantly increased the proportion of C18:2n-6(P < 0.001). Neither oocyte characteristics (number, their quality and number fertilized and cleaved per heifer per session) nor embryo characteristics (number and quality per heifer per session) and embryo development stages were affected by dietary treatment. Real-time RT-PCR was performed on immature and mature cumulus-oocyte complexes (COC). Prostaglandin E synthase-1 expression increased in L compared to S heifers. In conclusion, the type of fatty acid did not modify the numbers of oocytes and embryos produced by OPU-IVF and their quality in dairy heifers. Upregulation of prostaglandin E synthase-1 may ensure sufficient PGE2 production for oocyte maturation even when its precursor is low.  相似文献   

14.
The effects of dietary supplementation of either alpha-linolenic acid (18:3(n-3)) or stearidonic acid (18:4(n-3)) in combination with either linoleic acid (18:2(n-6)) or gamma-linolenic acid (18:3(n-6)) on liver fatty acid composition in mice were examined. Essential fatty acid deficient male C57BL/6 mice were separated into four groups of seven each and were fed a fat-free semi-purified diet supplemented with 1% (w/w) fatty acid methyl ester mixture (1:1), 18:2(n-6)/18:3(n-3), 18:2(n-6)/18:4(n-3), 18:3(n-6)/18:3(n-3), or 18:3(n-6)/18:4(n-3). After 7 days on the diets, fatty acid compositions in liver phosphatidylcholine and phosphatidylethanolamine fractions were analyzed. In groups fed 18:4(n-3) (18:2(n-6)/18:4(n-3) or 18:3(n-6)/18:4(n-3)) as compared to those fed 18:3(n-3) (18:2(n-6)/18:3(n-3) or 18:3(n-6)/18:3(n-3)), the levels of 20:4(n-3), 20:5(n-3) and 22:5(n-3) were increased, whereas those of 20:3(n-6) and 20:4(n-6) were decreased. When 18:3(n-6) replaced 18:2(n-6) as the source of n-6 acids, the levels of 18:3(n-6), 20:3(n-6), 20:4(n-6) and 22:5(n-6) were increased, whereas those of 20:4(n-3) and 20:5(n-3) were reduced. Replacing 18:3(n-3) by 18:4(n-3) reduced the (n-6)/(n-3) ratio by approx. 30%, whereas replacing 18:2(n-6) by 18:3(n-6) increased the (n-6)/(n-3) ratio by approx. 2-fold. These findings indicated that delta 6-desaturase products were metabolized more readily than their precursors. Both products also competed for the subsequent metabolic enzymes. However, the n-6 fatty acids derived from 18:3(n-6) were incorporated more favourably into liver phospholipids than n-3 fatty acids derived from 18:4(n-3).  相似文献   

15.
16.
In diabetes there is a decrease in membrane arachidonic (AA) and docosahexaenoic (DHA) acids and a concomitant increase in linoleic (LA) and alpha-linolenic (ALA) acids. This metabolic perturbation is thought to be due to impaired activity of Delta(6)- and Delta(5)-desaturases. Triacylglycerols are the major lipid pool in plasma and liver tissue and have a significant influence on fatty acid composition of membrane and circulating phospholipids. Data on the distribution of n-6 and n-3 polyunsaturated fatty acids of triacylglycerols in diabetes are sparse. We investigated whether streptozotocin-induced diabetes in Sprague-Dawley rats alters fatty acid composition of triacylglycerols and free fatty acids of liver tissue. The animals were fed a breeding diet prior to mating, during pregnancy and lactation. On days 1-2 of pregnancy, diabetes was induced in 10 of the 25 rats. Liver was obtained at post partum day 16 for analysis. Relative levels of LA (P=0.03), dihomo-gamma-linolenic acid (DHGLA) (P=0.02), AA (P=0.049), total n-6 (P=0.02), ALA (P=0.013), eicosapentaenoic acid (EPA) (P=0.004), docosapentaenoic acid (22:5n-3, DPA) (P=0.013), DHA (P=0.033), n-3 metabolites (P=0.015) and total n-3 (P=0.011) were significantly higher in the triacylglycerols of the diabetics compared with the controls. Similarly, liver free fatty acids of the diabetics had higher levels of LA (P=0.0001), DHGLA (P=0.001), AA (P=0.001), n-6 metabolites (P=0.002), total n-6 (P=0.0001), ALA (P=0.003), EPA (P=0.015), docosapentaenoic (22:5n-3, P=0.003), DHA (P=0.002), n-3 metabolites (P=0.005) and total n-3 (P=0.001). We conclude that impaired activity of desaturases and/or long chain acyl-CoA synthetase could not explain the higher levels of AA, DHA and n-6 and n-3 metabolites in the diabetics. This seems to be consistent with an alteration in the regulatory mechanism, which directs incorporation of polyunsaturated fatty acids either into triacylglycerols or phospholipids.  相似文献   

17.
18.
Background: Subarachnoid hemorrhage (SAH) is a serious condition, occurring more frequently in females than in males. SAH is mainly caused by rupture of an intracranial aneurysm, which is formed by localized dilation of the intracranial arterial vessel wall, usually at the apex of the arterial bifurcation. The female preponderance is usually explained by systemic factors (hormonal influences and intrinsic wall weakness); however, the uneven sex distribution of intracranial aneurysms suggests a possible physiologic factor—a local sex difference in the intracranial arteries.Objective: The aim of this study was to explore sex variation in the bifurcation anatomy of the middle cerebral artery (MCA) and internal carotid artery (ICA), and the subsequent hemodynamic impact.Methods: Vessel radii and bifurcation angles were measured in patients with MCA and ICA bifurcations. Data from a previously published study of 55 patients undergoing diagnostic cerebral digital subtraction angiography at Dalcross Private Hospital in Sydney, Australia, between 2002 and 2003, were available for analysis. The measurements were used to create idealized, averaged bifurcations of the MCA and ICA for females and males. Computational fluid dynamics simulations were performed to calculate hemodynamic forces in the models.Results: The vessel radii and bifurcation angles of 47 MCA and 52 ICA bifurcations in 49 patients (32 females, 17 males; mean age, 53 years; age range, 14–86 years) were measured. Statistically significant sex differences were found in vessel diameter (males larger than females; P < 0.05), but not in bifurcation angle. Computational fluid dynamics simulations revealed higher wall shear stress in the female MCA (19%) and ICA (50%) bifurcations compared with the male bifurcations.Conclusions: This study of MCA and ICA bifurcations in female and male patients suggests that sex differences in vessel size and blood flow velocity result in higher hemodynamic forces acting on the vessel wall in females. This new hypothesis may partly explain why intracranial aneurysms and SAH are more likely to occur in females than in males.  相似文献   

19.
Spray-dried milk enriched with n-3 fatty acids from linseed oil (LSO) or fish oil (FO) were fed to rats to study its influence on liver lipid peroxides, hepatic antioxidant enzyme activities, serum prostaglandins and platelet aggregation. Significant level of α linolenic acid, eicosapentaenoic acid and docosahexaenoic acid were accumulated at the expense of arachidonic acid in the liver of rats fed n-3 fatty acid enriched formulation. The linseed oil and fish oil enriched formulation fed group had 44 and 112% higher level of lipid peroxides in liver homogenate compared to control rats fed groundnut oil enriched formulation. Catalase activity in liver homogenate was increased by 37 and 183% respectively in linseed oil and fish oil formulation fed rats. The glutathione peroxidase activity decreased to an extent of 25–36% and glutathione transferase activity increased to an extent of 34–39% in rats fed n-3 fatty acids enriched formulation. Feeding n-3 fatty acid enriched formulation significantly elevated the n-3 fatty acids in platelets and increased the lipid peroxide level to an extent of 4.2 to 4.5-fold compared to control. The serum thromboxane B2 level was decreased by 35 and 42% respectively in linseed oil and fish oil enriched formulation fed rats, whereas 6-keto-prostaglandin F1α level was decreased by 17 and 23% respectively in linseed oil and fish oil enriched formulation fed rats. The extent and rate of platelet aggregation was decreased significantly in n-3 fatty acids enriched formulation fed rats. This indicated that n-3 fatty acids enriched formulation beneficially reduces platelet aggregation and also enhances the activities of hepatic antioxidant enzymes such as catalase and glutathione transferase.  相似文献   

20.
Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A(2) (cPLA(2) -IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective calcium-independent phospholipase A(2) (iPLA(2) )-VIA expression. We hypothesized that these changes are accompanied by up-regulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA 'adequate' (31.4 wt% linoleic acid) or 'deficient' (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-(14) C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid n-3 (DPAn-3, 22:5n-3), and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid (EtnGpl). Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promotes neuroprotection and alters neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号