首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Bread wheat (Triticum aestivum) is an important staple food. However, wheat gluten proteins cause celiac disease (CD) in 0.5 to 1% of the general population. Among these proteins, the α-gliadins contain several peptides that are associated to the disease.

Results

We obtained 230 distinct α-gliadin gene sequences from severaldiploid wheat species representing the ancestral A, B, and D genomes of the hexaploid bread wheat. The large majority of these sequences (87%) contained an internal stop codon. All α-gliadin sequences could be distinguished according to the genome of origin on the basis of sequence similarity, of the average length of the polyglutamine repeats, and of the differences in the presence of four peptides that have been identified as T cell stimulatory epitopes in CD patients through binding to HLA-DQ2/8. By sequence similarity, α-gliadins from the public database of hexaploid T. aestivum could be assigned directly to chromosome 6A, 6B, or 6D. T. monococcum (A genome) sequences, as well as those from chromosome 6A of bread wheat, almost invariably contained epitope glia-α9 and glia-α20, but never the intact epitopes glia-α and glia-α2. A number of sequences from T. speltoides, as well as a number of sequences fromchromosome 6B of bread wheat, did not contain any of the four T cell epitopes screened for. The sequences from T. tauschii (D genome), as well as those from chromosome 6D of bread wheat, were found to contain all of these T cell epitopes in variable combinations per gene. The differences in epitope composition resulted mainly from point mutations. These substitutions appeared to be genome specific.

Conclusion

Our analysis shows that α-gliadin sequences from the three genomes of bread wheat form distinct groups. The four known T cell stimulatory epitopes are distributed non-randomly across the sequences, indicating that the three genomes contribute differently to epitope content. A systematic analysis of all known epitopes in gliadins and glutenins will lead to better understanding of the differences in toxiCity among wheat varieties. On the basis of such insight, breeding strategies can be designed to generate less toxic varieties of wheat which may be tolerated by at least part of the CD patient population.  相似文献   

2.
Celiac disease is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins, including the α-gliadins. It has been shown that α-gliadins harbor several major epitopes involved in the disease pathogenesis. A major step towards elimination of gluten toxicity for celiac disease patients would thus be the elimination of such epitopes from α-gliadins. We have analyzed over 3,000 expressed α-gliadin sequences from 11 bread wheat cultivars to determine whether they encode for peptides potentially involved in celiac disease. All identified epitope variants were synthesized as peptides and tested for binding to the disease-associated HLA-DQ2 and HLA-DQ8 molecules and for recognition by patient-derived α-gliadin specific T cell clones. Several specific naturally occurring amino acid substitutions were identified for each of the α-gliadin derived peptides involved in celiac disease that eliminate the antigenic properties of the epitope variants. Finally, we provide proof of principle at the peptide level that through the systematic introduction of such naturally occurring variations α-gliadins genes can be generated that no longer encode antigenic peptides. This forms a crucial step in the development of strategies to modify gluten genes in wheat so that it becomes safe for celiac disease patients. It also provides the information to design and introduce safe gluten genes in other cereals, which would exhibit improved quality while remaining safe for consumption by celiac disease patients.  相似文献   

3.
4.
α-Gliadin proteins of the wheat gluten form a multigene family encoded by genomic loci Gli-A2, Gli-B2 and Gli-D2 located on the homoeologous wheat chromosomes 6AS, 6BS, and 6DS, respectively which upon partial digestion elicits celiac disease (CD) in the genetically susceptible individuals. The present investigation was planned to study the variations in the amino acid sequence of the α-gliadin proteins and CD eliciting epitopes in the Indian wheat cultivars. Representative wheat varieties released and cultivated in India during the period 1905–2011 were selected for studying the α-gliadin genes by cloning and sequencing followed by in silico analysis of the gene sequences. A lot of variation for α-gliadin gene sequences especially in T cell stimulatory epitopes glia-α9, glia-α20, glia-α2 and glia-α was observed in different wheat varieties. Modern varieties released during 1971–2011 had higher proportion of intact T-cell stimulatory epitopes. The old wheat varieties released in the period 1905–1970 on the other hand had large proportion of variant epitopes. We identified three wheat varieties namely C591, C273 and K78 having only variant epitopes at Gli-D2 and Gli-B2 and both intact and variant epitopes at Gli-A2. Identification of lower proportion of T-cell stimulatory epitopes in these three varieties is the first step towards developing a wheat variety less immunogenic for celiac disease patients. The gene sequences of the selected varieties have been submitted at NCBI with accession numbers GenBank KJ410473–KJ410488.  相似文献   

5.

Background

Celiac disease is a T-cell mediated chronic inflammatory disorder of the gut that is induced by dietary exposure to gluten proteins. CD4+ T cells of the intestinal lesion recognize gluten peptides in the context of HLA-DQ2.5 or HLA-DQ8 and the gluten derived peptides become better T-cell antigens after deamidation catalyzed by the enzyme transglutaminase 2 (TG2). In this study we aimed to identify the preferred peptide substrates of TG2 in a heterogeneous proteolytic digest of whole wheat gluten.

Methods

A method was established to enrich for preferred TG2 substrates in a complex gluten peptide mixture by tagging with 5-biotinamido-pentylamine. Tagged peptides were isolated and then identified by nano-liquid chromatography online-coupled to tandem mass spectrometry, database searching and final manual data validation.

Results

We identified 31 different peptides as preferred substrates of TG2. Strikingly, the majority of these peptides were harboring known gluten T-cell epitopes. Five TG2 peptide substrates that were predicted to bind to HLA-DQ2.5 did not contain previously characterized sequences of T-cell epitopes. Two of these peptides elicited T-cell responses when tested for recognition by intestinal T-cell lines of celiac disease patients, and thus they contain novel candidate T-cell epitopes. We also found that the intact 9mer core sequences of the respective epitopes were not present in all peptide substrates. Interestingly, those epitopes that were represented by intact forms were frequently recognized by T cells in celiac disease patients, whereas those that were present in truncated versions were infrequently recognized.

Conclusion

TG2 as well as gastrointestinal proteolysis play important roles in the selection of gluten T-cell epitopes in celiac disease.  相似文献   

6.
Gluten proteins are responsible for the viscoelastic properties of wheat flour but also for triggering pathologies in susceptible individuals, of which coeliac disease (CD) and noncoeliac gluten sensitivity may affect up to 8% of the population. The only effective treatment for affected persons is a strict gluten‐free diet. Here, we report the effectiveness of seven plasmid combinations, encompassing RNAi fragments from α‐, γ‐, ω‐gliadins, and LMW glutenin subunits, for silencing the expression of different prolamin fractions. Silencing patterns of transgenic lines were analysed by gel electrophoresis, RP‐HPLC and mass spectrometry (LC‐MS/MS), whereas gluten immunogenicity was assayed by an anti‐gliadin 33‐mer monoclonal antibody (moAb). Plasmid combinations 1 and 2 downregulated only γ‐ and α‐gliadins, respectively. Four plasmid combinations were highly effective in the silencing of ω‐gliadins and γ‐gliadins, and three of these also silenced α‐gliadins. HMW glutenins were upregulated in all but one plasmid combination, while LMW glutenins were downregulated in three plasmid combinations. Total protein and starch contents were unaffected regardless of the plasmid combination used. Six plasmid combinations provided strong reduction in the gluten content as measured by moAb and for two combinations, this reduction was higher than 90% in comparison with the wild type. CD epitope analysis in peptides identified in LC‐MS/MS showed that lines from three plasmid combinations were totally devoid of CD epitopes from the highly immunogenic α‐ and ω‐gliadins. Our findings raise the prospect of breeding wheat species with low levels of harmful gluten, and of achieving the important goal of developing nontoxic wheat cultivars.  相似文献   

7.
山东保存小麦种质资源面粉白度分析   总被引:1,自引:0,他引:1  
对2068份小麦种质资源进行了面粉白度测定和高白度小麦种质子粒硬度测定。结果表明,山东小麦地方品种、山东小麦育成品种和省外引进小麦品种面粉白度值的分布范围分别为63.9~82.9、63.1~83.8和67.2~84.2。筛选出面粉白度值大于80的小麦种质342份(包括白度值大于83的种质26份),其中地方品种22份,山东育成品种(系)228份,省外引进种质92份。从高白度小麦种质资源中,筛选出子粒硬度指数≥50符合高白度强筋、中强筋或中筋的种质资源18份,对培育中筋以上高白度小麦新品种,以满足人们口味和健康保障具有重要意义。  相似文献   

8.
Celiac disease (CD) is a complex inflammatory disorder of the small intestine, induced by dietary gluten in genetically susceptible individuals. CD is strongly associated with HLA-DQ2 and it has recently been established that gut-derived DQ2-restricted T cells from patients with CD predominantly recognize gluten-derived peptides in which specific glutamine residues are deamidated to glutamic acid by tissue transglutaminase. Recently, intestinally expressed human genes with high homology to DQ2-gliadin celiac T-cell epitopes have been identified. Single or double point mutations which would increase the celiac T-cell epitope homology, and mutation in these genes, leading to the expression of glutamic acid at particular positions, could hypothetically be involved in the initiation of CD in HLA-DQ2-positive children. Six gene regions with high celiac T-cell epitope homology were investigated for single-nucleotide polymorphisms using direct sequencing of DNA from 20 CD patients, 27 type 1 diabetes mellitus (T1DM) patients with associated CD, 24 patients with T1DM without CD and 110 healthy controls, all of Caucasian origin. No variants in any of these genes in any of the investigated groups were found. We conclude that gut-expressed human celiac epitope homologous peptides are unlikely to represent non-HLA risk factors in the development of celiac disease in Caucasians.  相似文献   

9.
以人工合成节节麦-黑麦双二倍体基因组DNA为模板,用小麦种子醇溶蛋白保守引物进行PCR扩增,经克隆测序获得了843 ~ 897 bp共15个新的DNA序列(GenBank登录号为:JQ029719,JQ046392~JQ046405),分别编码280 ~298个氨基酸.序列比对结果表明,它们具有α-醇溶蛋白基因的典型结构特点,是α-醇溶蛋白基因家系成员,其中有两个序列为同义突变.利用14个新氨基酸序列与乳糜泻( celiac disease)病人毒性抗原相关序列的比对,发现有8个序列的Glia-α-2和Glia-α-9型抗原序列产生缺失和替换.与来自粗山羊草属和黑麦属的α-醇溶蛋白基因的编码氨基酸建立系统树,结果表明,14个DNA序列编码的氨基酸序列与粗山羊草属的相关序列聚在一起.  相似文献   

10.
Hao C  Wang L  Ge H  Dong Y  Zhang X 《PloS one》2011,6(2):e17279
Two hundred and fifty bread wheat lines, mainly Chinese mini core accessions, were assayed for polymorphism and linkage disequilibrium (LD) based on 512 whole-genome microsatellite loci representing a mean marker density of 5.1 cM. A total of 6,724 alleles ranging from 1 to 49 per locus were identified in all collections. The mean PIC value was 0.650, ranging from 0 to 0.965. Population structure and principal coordinate analysis revealed that landraces and modern varieties were two relatively independent genetic sub-groups. Landraces had a higher allelic diversity than modern varieties with respect to both genomes and chromosomes in terms of total number of alleles and allelic richness. 3,833 (57.0%) and 2,788 (41.5%) rare alleles with frequencies of <5% were found in the landrace and modern variety gene pools, respectively, indicating greater numbers of rare variants, or likely new alleles, in landraces. Analysis of molecular variance (AMOVA) showed that A genome had the largest genetic differentiation and D genome the lowest. In contrast to genetic diversity, modern varieties displayed a wider average LD decay across the whole genome for locus pairs with r(2)>0.05 (P<0.001) than the landraces. Mean LD decay distance for the landraces at the whole genome level was <5 cM, while a higher LD decay distance of 5-10 cM in modern varieties. LD decay distances were also somewhat different for each of the 21 chromosomes, being higher for most of the chromosomes in modern varieties (<5 ~ 25 cM) compared to landraces (<5 ~ 15 cM), presumably indicating the influences of domestication and breeding. This study facilitates predicting the marker density required to effectively associate genotypes with traits in Chinese wheat genetic resources.  相似文献   

11.
Synthetic hexaploid wheat (SHW) that combines novel and elite genes from the tetraploid wheat Triticum turgidum L. and wild ancestor Aegilops tauschii Coss., has been used to genetically improve hexaploid common wheat. The abundant genetic diversity in SHW can effectively make breakthroughs in wheat genetic improvement through the inclusion of increased variation. In this paper, we reviewed the current advances in research and utilization of the primary SHW lines and SHW-derived wheat varieties that have enhanced evolution of modern wheat under conditions of natural and artificial selection in southwestern China. Using primary SHW lines, four high-yielding wheat varieties have been developed. In addition, using the SHW-derived varieties as breeding parents, 12 new wheat varieties were also developed. Results of genotype–phenotype and fingerprint analysis showed that the introgressed alleles from SHW lines have contributed a great number of elite characters to the new wheat varieties, and these elite characters include disease resistance, more spikes per plant, more grains per spike, larger grains, and higher grain-yield potential. We found that the primary SHW lines and SHW-derived varieties have identifiable effects to enhance genetic variation and adaptive evolution of modern hexaploid wheat, which significantly increased the grain yields of hexaploid wheat in recent years. These findings have significant implications in the breeding of high-yielding wheat varieties resistant to biotic and abiotic stresses using SHW as genetic resources.  相似文献   

12.
Wang L  Ge H  Hao C  Dong Y  Zhang X 《PloS one》2012,7(2):e29432
Chinese wheat mini core collection (262 accessions) was genotyped at 531 microsatellite loci representing a mean marker density of 5.1 cM. One-thousand-kernel weights (TKW) of lines were measured in five trials (three environments in four growing seasons). Structure analysis based on 42 unlinked SSR loci indicated that the materials formed two sub-populations, viz., landraces and modern varieties. A large difference in TKW (7.08 g, P<0.001) was found between the two sub-groups. Therefore, TKW is a major yield component that was improved in the past 6 decades; it increased from a mean 31.5 g in the 1940s to 44.64 g in the 2000s, representing a 2.19 g increase in each decade. Analyses based on a mixed linear model (MLM), population structure (Q) and relative kinship (K) revealed 22 SSR loci that were significantly associated with mean TKW (MTKW) of the five trials estimated by the best linear unbiased predictor (BLUP) method. They were mainly distributed on chromosomes of homoeologous groups 1, 2, 3, 5 and 7. Six loci, cfa2234-3A, gwm156-3B, barc56-5A, gwm234-5B, wmc17-7A and cfa2257-7A individually explained more than 11.84% of the total phenotypic variation. Favored alleles for breeding at the 22 loci were inferred according to their estimated effects on MTKW based on mean difference of varieties grouped by genotypes. Statistical simulation showed that these favored alleles have additive genetic effects. Frequency changes of alleles at loci associated with TKW are much more dramatic than those at neutral loci between the sub-groups. The numbers of favored alleles in modern varieties indicate there is still considerable genetic potential for their use as markers for genome selection of TKW in wheat breeding. Alleles that can be used globally to increase TKW were inferred according to their distribution by latitude and frequency of changes between landraces and the modern varieties.  相似文献   

13.
Celiac disease is caused by an abnormal intestinal T-cell response to gluten proteins of wheat, barley and rye. Over the last few years, a number of gluten T-cell epitopes restricted by celiac disease associated HLA-DQ molecules have been characterized. In this work, we give an overview of these epitopes and suggest a comprehensive, new nomenclature.  相似文献   

14.

Key message

High-throughput genotyping of Swiss bread wheat and spelt accessions revealed differences in their gene pools and identified bread wheat landraces that were not used in breeding.

Abstract

Genebanks play a pivotal role in preserving the genetic diversity present among old landraces and wild progenitors of modern crops and they represent sources of agriculturally important genes that were lost during domestication and in modern breeding. However, undesirable genes that negatively affect crop performance are often co-introduced when landraces and wild crop progenitors are crossed with elite cultivars, which often limit the use of genebank material in modern breeding programs. A detailed genetic characterization is an important prerequisite to solve this problem and to make genebank material more accessible to breeding. Here, we genotyped 502 bread wheat and 293 spelt accessions held in the Swiss National Genebank using a 15K wheat SNP array. The material included both spring and winter wheats and consisted of old landraces and modern cultivars. Genome- and sub-genome-wide analyses revealed that spelt and bread wheat form two distinct gene pools. In addition, we identified bread wheat landraces that were genetically distinct from modern cultivars. Such accessions were possibly missed in the early Swiss wheat breeding program and are promising targets for the identification of novel genes. The genetic information obtained in this study is appropriate to perform genome-wide association studies, which will facilitate the identification and transfer of agriculturally important genes from the genebank into modern cultivars through marker-assisted selection.
  相似文献   

15.
Wheat proteins are important for the physico-chemical properties of bread-dough and contribute to the protein intake in the human diet. In certain individuals, an immunological reactivity of the gluten protein family is strongly implicated in the etiology of celiac disease (CD) and non-celiac wheat sensitivity (NCWS). There is evidence that gluten-related disorders have increased in frequency in recent years. Gluten proteins were characterized and quantified by reversed-phase high-performance liquid chromatography (RP-HPLC) while the occurrence of CD immunogenic epitopes was searched in the gliadin sequences of Triticeae within the NCBI database. We have observed a tendency toward low content of gliadins in cultivated species compared to that of the wild ancestors in all Triticeae members. Regarding the glutenin subunits, there was no clear trend, but levels tended to be higher in cultivated species. Thousand-kernel weight is higher for domesticated and cultivated species. Quantification of DQ2- and DQ8-restricted epitopes in gliadin sequences showed a great variability in the number of CD epitopes per species and genome. A higher frequency of immunnogenic epitopes was found to be associated with genomes of the DD, BBAADD, and RR type. Durum wheats tend to have a lower content of gluten and CD immunogenic epitopes. Cultivated barley could be an alternative cereal with low immunogenic epitopes and low gluten. The results reported in this study suggest that domestication and breeding have contributed to a decrease in the content of gliadins and total gluten in the Triticeae species over time.  相似文献   

16.
Celiac disease (CD) is an increasingly diagnosed enteropathy (prevalence, 1:200-1:300) that is induced by dietary exposure to wheat gliadins (as well as related proteins in rye and barley) and is strongly associated with HLA-DQ2 (alpha1*0501, beta1*0201), which is present in over 90% of CD patients. Because a variety of gliadin peptides have been identified as epitopes for gliadin-specific T-cell clones and as bioactive sequences in feeding studies and in ex vivo CD intestinal biopsy challenge, it has been unclear whether a 'dominant' T-cell epitope is associated with CD. Here, we used fresh peripheral blood lymphocytes from individual subjects undergoing short-term antigen challenge and tissue transglutaminase-treated, overlapping synthetic peptides spanning A-gliadin to demonstrate a transient, disease-specific, DQ2-restricted, CD4 T-cell response to a single dominant epitope. Optimal gamma interferon release in an ELISPOT assay was elicited by a 17-amino-acid peptide corresponding to the partially deamidated peptide of A-gliadin amino acids 57-73 (Q65E). Consistent with earlier reports indicating that host tissue transglutaminase modification of gliadin enhances gliadin-specific CD T-cell responses, tissue transglutaminase specifically deamidated Q65 in the peptide of A-gliadin amino acids 56-75. Discovery of this dominant epitope may allow development of antigen-specific immunotherapy for CD.  相似文献   

17.
A set of 41 wheat microsatellite markers (WMS), giving 42 polymorphic loci (two loci on each chromosome), was used to describe genetic diversity in a sample of 559 French bread wheat accessions (landraces and registered varieties) cultivated between 1800 and 2000. A total of 609 alleles were detected. Allele number per locus ranged from 3 to 28, with a mean allele number of 14.5. On the average, about 72% of the total number of alleles were observed with a frequency of less than 5% and were considered to be rare alleles. WMS markers used showed different levels of gene diversity: the highest PIC value occurred in the B genome (0.686) compared to 0.641 and 0.659 for the A and D genomes, respectively. When comparing landraces with registered varieties gathered in seven temporal groups, a cluster analysis based on an F st matrix provided a clear separation of landraces from the seven variety groups, while a shift was observed between varieties registered before and after 1970. There was a decrease of about 25% in allelic richness between landraces and varieties. In contrast, when considering only registered varieties, changes in diversity related to temporal trends appeared more qualitative than quantitative, except at the end of the 1960s, when a bottleneck might have occurred. New varieties appear to be increasingly similar to each other in relation to allelic composition, while differences between landraces are more and more pronounced over time. Finally, considering a sub-sample of 193 varieties representative of breeding material selected during the twentieth century by the six most important plant breeding companies, few differences in diversity were observed between the different breeding programmes. The observed structure of diversity in French bread wheat collections is discussed in terms of consequences, both for plant breeders and for managers of crop genetic resources.Communicated by H.H. Geiger  相似文献   

18.
Celiac disease (CeD) is a human leukocyte antigen (HLA)-linked autoimmune-like disorder that is triggered by the ingestion of gluten or related storage proteins. The majority of CeD patients are HLA-DQ2.5+, with the remainder being either HLA-DQ8+ or HLA-DQ2.2+. Structural studies have shown how deamidation of gluten epitopes engenders binding to HLA-DQ2.5/8, which then triggers an aberrant CD4+ T cell response. HLA tetramer studies, combined with structural investigations, have demonstrated that repeated patterns of TCR usage underpins the immune response to some HLADQ2.5/8 restricted gluten epitopes, with distinct TCR motifs representing common landing pads atop the HLA–gluten complexes. Structural studies have provided insight into TCR specificity and cross-reactivity towards gluten epitopes, as well as cross-reactivity to bacterial homologues of gluten epitopes, suggesting that environmental factors may directly play a role in CeD pathogenesis. Collectively, structural immunology-based studies in the CeD axis may lead to new therapeutics/diagnostics to treat CeD, and also serve as an exemplar for other T cell mediated autoimmune diseases.  相似文献   

19.
甘、青两省春小麦遗传多样性演变   总被引:10,自引:1,他引:10  
对甘、青两省自20世纪40年代以来生产上曾大面积应用的200多个春小麦地方品种和育成品种资料进行了分析,结果表明,19个形态性状,5个农艺性状和2个品质性状都存在着广泛的遗传多样性,虽然育成品种农艺性状和品质性状的遗传多样性总体上大于地方品种,但是从20世纪60年代开展春小麦杂交育种工作之后,育成品种形态性状,农艺性状和品质性状遗传多样性呈下降趋势,评价育种对小麦遗传多样性的影响,不能足将地方品种和育成品种的遗传多样性作一简单比较就得出结论,而是应该在遗传多样性演变的动态过程中去研究。  相似文献   

20.
Posttranslational modification of Ag is implicated in several autoimmune diseases. In celiac disease, a cereal gluten-induced enteropathy with several autoimmune features, T cell recognition of the gluten Ag is heavily dependent on the posttranslational conversion of Gln to Glu residues. Evidence suggests that the enhanced recognition of deamidated gluten peptides results from improved peptide binding to the MHC and TCR interaction with the peptide-MHC complex. In this study, we report that there is a biased usage of TCR Vβ6.7 chain among TCRs reactive to the immunodominant DQ2-α-II gliadin epitope. We isolated Vβ6.7 and DQ2-αII tetramer-positive CD4(+) T cells from peripheral blood of gluten-challenged celiac patients and sequenced the TCRs of a large number of single T cells. TCR sequence analysis revealed in vivo clonal expansion, convergent recombination, semipublic response, and the notable conservation of a non-germline-encoded Arg residue in the CDR3β loop. Functional testing of a prototype DQ2-α-II-reactive TCR by analysis of TCR transfectants and soluble single-chain TCRs indicate that the deamidated residue in the DQ2-α-II peptide poses constraints on the TCR structure in which the conserved Arg residue is a critical element. The findings have implications for understanding T cell responses to posttranslationally modified Ags.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号