首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 550 毫秒
1.
2.
Sugar beet (Beta vulgaris) is an important root crop for sucrose production. A study was conducted to find a new abundant source of microsatellite (SSR) markers in order to develop marker assistance for breeding. Different sources of existing microsatellites were used and new ones were developed to compare their efficiency to reveal diversity in mapping population and mapping coverage. Forty-one microsatellite markers were isolated from a B. vulgaris ssp maritima genomic library and 201 SSRs were extracted from a B. vulgaris ssp vulgaris library. Data mining was applied on GenBank B. vulgaris expressed sequence tags (ESTs), 803 EST-SSRs were identified over 19,709 ESTs. Characteristics, polymorphism and cross-species transferability of these microsatellites were compared. Based on these markers, a high density genetic map was constructed using 92 F2 individuals from a cross between a sugar and a table beet. The map contains 284 markers, spans over 555 cM and covers the nine chromosomes of the species with an average markers density of one marker every 2.2 cM. A set of markers for assignation to the nine chromosomes of sugar beet is provided.  相似文献   

3.
We developed a reference karyotype for B. vulgaris which is applicable to all beet cultivars and provides a consistent numbering of chromosomes and genetic linkage groups. Linkage groups of sugar beet were assigned to physical chromosome arms by FISH (fluorescent in situ hybridization) using a set of 18 genetically anchored BAC (bacterial artificial chromosome) markers. Genetic maps of sugar beet were correlated to chromosome arms, and North–South orientation of linkage groups was established. The FISH karyotype provides a technical platform for genome studies and can be applied for numbering and identification of chromosomes in related wild beet species. The discrimination of all nine chromosomes by BAC probes enabled the study of chromosome‐specific distribution of the major repetitive components of sugar beet genome comprising pericentromeric, intercalary and subtelomeric satellites and 18S‐5.8S‐25S and 5S rRNA gene arrays. We developed a multicolor FISH procedure allowing the identification of all nine sugar beet chromosome pairs in a single hybridization using a pool of satellite DNA probes. Fiber‐FISH was applied to analyse five chromosome arms in which the furthermost genetic marker of the linkage group was mapped adjacently to terminal repetitive sequences on pachytene chromosomes. Only on two arms telomere arrays and the markers are physically linked, hence these linkage groups can be considered as terminally closed making the further identification of distal informative markers difficult. The results support genetic mapping by marker localization, the anchoring of contigs and scaffolds for the annotation of the sugar beet genome sequence and the analysis of the chromosomal distribution patterns of major families of repetitive DNA.  相似文献   

4.
Sugar beet (Beta vulgaris) is an important crop plant that accounts for 30% of the world's sugar production annually. The genus Beta is a distant relative of currently sequenced taxa within the core eudicotyledons; the genomic characterization of sugar beet is essential to make its genome accessible to molecular dissection. Here, we present comprehensive genomic information in genetic and physical maps that cover all nine chromosomes. Based on this information we identified the proposed ancestral linkage groups of rosids and asterids within the sugar beet genome. We generated an extended genetic map that comprises 1127 single nucleotide polymorphism markers prepared from expressed sequence tags and bacterial artificial chromosome (BAC) end sequences. To construct a genome-wide physical map, we hybridized gene-derived oligomer probes against two BAC libraries with 9.5-fold cumulative coverage of the 758 Mbp genome. More than 2500 probes and clones were integrated both in genetic maps and the physical data. The final physical map encompasses 535 chromosomally anchored contigs that contains 8361 probes and 22 815 BAC clones. By using the gene order established with the physical map, we detected regions of synteny between sugar beet (order Caryophyllales) and rosid species that involves 1400-2700 genes in the sequenced genomes of Arabidopsis, poplar, grapevine, and cacao. The data suggest that Caryophyllales share the palaeohexaploid ancestor proposed for rosids and asterids. Taken together, we here provide extensive molecular resources for sugar beet and enable future high-resolution trait mapping, gene identification, and cross-referencing to regions sequenced in other plant species.  相似文献   

5.
A wealth of molecular resources have been developed for rice genomics, including dense genetic maps, expressed sequence tags (ESTs), yeast artificial chromosome maps, bacterial artificial chromosome (BAC) libraries and BAC end sequence databases. Integration of genetic and physical maps involves labor-intensive empirical experiments. To accelerate the integration of the bacterial clone resources with the genetic map for the International Rice Genome Sequencing Project, we cleaned and filtered the available EST and BAC end sequences for repetitive sequences and then searched all available rice genetic markers with our filtered databases. We identified 418 genetic markers that aligned with at least one BAC end sequence with >95% sequence identity, providing a set of large insert clones with an average separation of 1 Mb that can serve as nucleation points for the sequencing phase of the International Rice Genome Sequencing Project.  相似文献   

6.
In the last decade microsatellites have become one of the most useful genetic markers used in a large number of organisms due to their abundance and high level of polymorphism. Microsatellites have been used for individual identification, paternity tests, forensic studies and population genetics. Data on microsatellite abundance comes preferentially from microsatellite enriched libraries and DNA sequence databases. We have conducted a search in GenBank of more than 16,000 Schistosoma mansoni ESTs and 42,000 BAC sequences. In addition, we obtained 300 sequences from CA and AT microsatellite enriched genomic libraries. The sequences were searched for simple repeats using the RepeatMasker software. Of 16,022 ESTs, we detected 481 (3%) sequences that contained 622 microsatellites (434 perfect, 164 imperfect and 24 compounds). Of the 481 ESTs, 194 were grouped in 63 clusters containing 2 to 15 ESTs per cluster. Polymorphisms were observed in 16 clusters. The 287 remaining ESTs were orphan sequences. Of the 42,017 BAC end sequences, 1,598 (3.8%) contained microsatellites (2,335 perfect, 287 imperfect and 79 compounds). The 1,598 BAC end sequences 80 were grouped into 17 clusters containing 3 to 17 BAC end sequences per cluster. Microsatellites were present in 67 out of 300 sequences from microsatellite enriched libraries (55 perfect, 38 imperfect and 15 compounds). From all of the observed loci 55 were selected for having the longest perfect repeats and flanking regions that allowed the design of primers for PCR amplification. Additionally we describe two new polymorphic microsatellite loci.  相似文献   

7.
A core genetic map of the legume Medicago truncatula has been established by analyzing the segregation of 288 sequence-characterized genetic markers in an F(2) population composed of 93 individuals. These molecular markers correspond to 141 ESTs, 80 BAC end sequence tags, and 67 resistance gene analogs, covering 513 cM. In the case of EST-based markers we used an intron-targeted marker strategy with primers designed to anneal in conserved exon regions and to amplify across intron regions. Polymorphisms were significantly more frequent in intron vs. exon regions, thus providing an efficient mechanism to map transcribed genes. Genetic and cytogenetic analysis produced eight well-resolved linkage groups, which have been previously correlated with eight chromosomes by means of FISH with mapped BAC clones. We anticipated that mapping of conserved coding regions would have utility for comparative mapping among legumes; thus 60 of the EST-based primer pairs were designed to amplify orthologous sequences across a range of legume species. As an initial test of this strategy, we used primers designed against M. truncatula exon sequences to rapidly map genes in M. sativa. The resulting comparative map, which includes 68 bridging markers, indicates that the two Medicago genomes are highly similar and establishes the basis for a Medicago composite map.  相似文献   

8.
Sugarcane has become an increasingly important first-generation biofuel crop in tropical and subtropical regions. It has a large, complex, polyploid genome that has hindered the progress of genomic research and marker-assisted selection. Genetic mapping and ultimately genome sequence assembly require a large number of DNA markers. Simple sequence repeats (SSRs) are widely used in genetic mapping because of their abundance, high rates of polymorphism, and ease of use. The objectives of this study were to develop SSR markers for construction of a saturated genetic map and to characterize the frequency and distribution of SSRs in a polyploid genome. SSR markers were mined from expressed sequence tag (EST), reduced representation library genomic sequences, and bacterial artificial chromosome (BAC) sequences. A total of 5,675 SSR markers were surveyed in a segregating population. The overall successful amplification and polymorphic rates were 87.9 and 16.4%, respectively. The trinucleotide repeat motifs were most abundant, with tri- and hexanucleotide motifs being the most abundant for the ESTs. BAC and genomic SSRs were mostly AT-rich while the ESTs were relatively GC-rich due to codon bias. These markers were also aligned to the sorghum genome, resulting in 1,203 markers mapped in the sorghum genome. This set of SSRs conserved in sugarcane and sorghum would be the most informative for mapping quantitative trait loci in sugarcane and for comparative genomic analyses. This large collection of SSR markers is a valuable resource for sugarcane genomic research and crop improvement.  相似文献   

9.
Seventy five expressed sequence tags (ESTs) that are associated with functions in carbohydrate and nitrogen metabolism were genotyped in 108 plants of an F2 population of sugar beet ( Beta vulgaris L.) segregating for sugar quality and yield parameters. Supplemented by known RFLP and AFLP markers, the resulting map spans 446 cM of the 758-Mbp genome of sugar beet. F3 test-cross plants were analysed for corrected sugar yield, beet yield, ion balance and the content of sugar, amino nitrogen, potassium and sodium in six locations. Twenty one significant quantitative trait loci (QTLs) were detected using the composite interval mapping approach. Expressed genes flanking the QTLs were identified in all cases. Correlations between QTLs and potential candidate genes are discussed.  相似文献   

10.
11.
Single nucleotide polymorphisms (SNP) are the most abundant type of DNA polymorphism found in animal and plant genomes. They provide an important new source of molecular markers that are useful in genetic mapping, map-based positional cloning, quantitative trait locus mapping and the assessment of genetic distances between individuals. Very little is known on the frequency of SNPs in cassava. We have exploited the recently-developed collection of cassava expressed sequence tags (ESTs) to detect SNPs in the five cultivars of cassava used to generate the sequences. The frequency of intra-cultivar and inter-cultivar SNPs after analysis of 111 contigs was one polymorphism per 905 and one per 1,032 bp, respectively; totaling 1 each 509 bp. We have obtained further information on the frequency of SNPs in six cassava cultivars by analysis of 33 amplicons obtained from 3 EST and BAC end sequences. Overall, about 11 kb of DNA sequence was obtained for each cultivar. A total of 186 SNPs (136 and 50 from ESTs and BAC ends, respectively) were identified. Among these, 146 were intra-cultivar polymorphisms, while 80 were inter-cultivar polymorphisms. Thus the total frequency of SNPs was one per 62 bp. This information will help to develop new strategies for EST mapping as well as their association with phenotypic characteristics.  相似文献   

12.
13.
A bacterial artificial chromosome (BAC) library of the 750-Mbp sugar beet genome represented in hybrid US H20 was constructed fromHind III-digested DNA, with an average insert size of 120 kbp. US H20 is a variety grown in the eastern United States. It exhibits heterosis for emergence and yield, presumably because of its hybridity between eastern and western US germplasm sources. Filter arrays were used to assess the abundance and distribution of particular nucleotide sequences. An rRNA gene probe found that 1.2% of the library carried sequences similar to these highly repetitive and conserved sequences. A simple sequence repeat element (CA)8 thought to be predominantly distributed throughout centromere regions of all chromosomes was present in 1.7% of clones. For more than half of the 28 randomly chosen expressed sequence tags (ESTs) used as probes, a higher-than-expected number of single-copy hybridization signals was observed. Assuming 6× genome coverage, this suggests that many duplicate genes exist in the beet genome.  相似文献   

14.
Early bolting in sugar beet (Beta vulgaris L.) is controlled by the dominant gene B. From an incomplete physical map around the B gene, 18 bacterial artificial chromosomes (BACs) were selected for marker development. Three BACs were shotgun-sequenced, and 61 open reading frames (ORFs) were identified. Together with 104 BAC ends from 54 BACs, a total number of 55,464 nucleotides were sequenced. Of these, 37 BAC ends and 12 ORFs were selected for marker development. Thirty-one percent of the sequences were found to be single copy and 24%, low copy. From these sequences, 15 markers from ten different BACs were developed. Ten polymorphisms were determined by simple agarose gel electrophoresis of either restricted or non-restricted PCR products. Another five markers were determined by tetra-primer amplification refractory mutation system-PCR. In order to select candidate BACs for cloning the gene, genetic linkage between seven markers and the bolting gene was calculated using 1,617 plants from an F2 population segregating for early bolting. The recombination values ranged between 0.0033 and 0.0201. In addition, a set of 41 wild and cultivated Beta accessions differing in their early bolting character was genotyped with seven markers. A common haplotype encompassing two marker loci and the b allele was found in all sugar beet varieties, indicating complete linkage disequilibrium between these loci. This suggests that the bolting gene is located in close vicinity to these markers, and the corresponding BACs can be used for cloning the gene.  相似文献   

15.
Recent results indicate that association mapping in populations from applied plant breeding is a powerful tool to detect QTL which are of direct relevance for breeding. The focus of this study was to unravel the genetic architecture of six agronomic traits in sugar beet. To this end, we employed an association mapping approach, based on a very large population of 924 elite sugar beet lines from applied plant breeding, fingerprinted with 677 single nucleotide polymorphism (SNP) markers covering the entire genome. We show that in this population linkage disequilibrium decays within a short genetic distance and is sufficient for the detection of QTL with a large effect size. To increase the QTL detection power and the mapping resolution a much higher number of SNPs is required. We found that for QTL detection, the mixed model including only the kinship matrix performed best, even in the presence of a considerable population structure. In genome-wide scans, main effect QTL and epistatic QTL were detected for all six traits. Our full two-dimensional epistasis scan revealed that for complex traits there appear to be epistatic master regulators, loci which are involved in a large number of epistatic interactions throughout the genome.  相似文献   

16.
The Human BAC Ends database includes all non-redundant human BAC end sequences (BESs) generated by The Institute for Genomic Research (TIGR), the University of Washington (UW) and California Institute of Technology (CalTech). It incorporates the available BAC mapping data from different genome centers and the annotation results of each end sequence for the contents of repeats, ESTs and STS markers. For each BAC end the database integrates the sequence, the phred quality scores, the map and the annotation, and provides links to sites of the library information, the reports of GenBank, dbGSS and GDB, and other relevant data. The database is freely accessible via the web and supports sequence or clone searches and anonymous FTP. The relevant sites and resources are described at http://www.tigr.org/ tdb/humgen/bac_end_search/bac_end_intro.html  相似文献   

17.
A second-generation linkage map was constructed for the silkworm, Bombyx mori, focusing on mapping Bombyx sequences appearing in public nucleotide databases and bacterial artificial chromosome (BAC) contigs. A total of 874 BAC contigs containing 5067 clones (22% of the library) were constructed by PCR-based screening with sequence-tagged sites (STSs) derived from whole-genome shotgun (WGS) sequences. A total of 523 BAC contigs, including 342 independent genes registered in public databases and 85 expressed sequence tags (ESTs), were placed onto the linkage map. We found significant synteny and conserved gene order between B. mori and a nymphalid butterfly, Heliconius melpomene, in four linkage groups (LGs), strongly suggesting that using B. mori as a reference for comparative genomics in Lepidotera is highly feasible.  相似文献   

18.
A BAC-based integrated linkage map of the silkworm Bombyx mori   总被引:3,自引:0,他引:3  

Background

In 2004, draft sequences of the model lepidopteran Bombyx mori were reported using whole-genome shotgun sequencing. Because of relatively shallow genome coverage, the silkworm genome remains fragmented, hampering annotation and comparative genome studies. For a more complete genome analysis, we developed extended scaffolds combining physical maps with improved genetic maps.

Results

We mapped 1,755 single nucleotide polymorphism (SNP) markers from bacterial artificial chromosome (BAC) end sequences onto 28 linkage groups using a recombining male backcross population, yielding an average inter-SNP distance of 0.81 cM (about 270 kilobases). We constructed 6,221 contigs by fingerprinting clones from three BAC libraries digested with different restriction enzymes, and assigned a total of 724 single copy genes to them by BLAST (basic local alignment search tool) search of the BAC end sequences and high-density BAC filter hybridization using expressed sequence tags as probes. We assigned 964 additional expressed sequence tags to linkage groups by restriction fragment length polymorphism analysis of a nonrecombining female backcross population. Altogether, 361.1 megabases of BAC contigs and singletons were integrated with a map containing 1,688 independent genes. A test of synteny using Oxford grid analysis with more than 500 silkworm genes revealed six versus 20 silkworm linkage groups containing eight or more orthologs of Apis versus Tribolium, respectively.

Conclusion

The integrated map contains approximately 10% of predicted silkworm genes and has an estimated 76% genome coverage by BACs. This provides a new resource for improved assembly of whole-genome shotgun data, gene annotation and positional cloning, and will serve as a platform for comparative genomics and gene discovery in Lepidoptera and other insects.  相似文献   

19.
We have created a federated database for genome studies of Magnaporthe grisea, the causal agent of rice blast disease, by integrating end sequence data from BAC clones, genetic marker data and BAC contig assembly data. A library of 9216 BAC clones providing >25-fold coverage of the entire genome was end sequenced and fingerprinted by HindIII digestion. The Image/FPC software package was then used to generate an assembly of 188 contigs covering >95% of the genome. The database contains the results of this assembly integrated with hybridization data of genetic markers to the BAC library. AceDB was used for the core database engine and a MySQL relational database, populated with numerical representations of BAC clones within FPC contigs, was used to create appropriately scaled images. The database is being used to facilitate sequencing efforts. The database also allows researchers mapping known genes or other sequences of interest, rapid and easy access to the fundamental organization of the M.grisea genome. This database, MagnaportheDB, can be accessed on the web at http://www.cals.ncsu.edu/fungal_genomics/mgdatabase/int.htm.  相似文献   

20.
Urofacial (Ochoa) syndrome is an autosomal recessive disease characterized by distorted facial expression and urinary abnormalities. Previously, we mapped the UFS gene to chromosome 10q23-q24 and narrowed the interval to one YAC clone of 1410 kb. Here, we have constructed a BAC/PAC contig of the 1-Mb region using STS content mapping with 42 BAC/PAC-end sequences, 9 previously reported and 16 newly identified microsatellite markers, and 14 EST markers. A total of 26 polymorphic microsatellite markers were genotyped for 31 UFS patients from Colombia and 2 patients from the United States. Haplotype analyses suggest that the UFS gene is located within two overlapping BAC clones, a region of <360 kb of DNA sequence. We tested 42 EST markers previously mapped to the D10S1709-D10S603 interval against the BAC/PAC contig and identified 11 ESTs located in the 1-Mb region. Four of the 11 ESTs mapped to the 360-kb UFS critical region. Shotgun sequencing of the two BAC clones and BLASTN search of the EST databases revealed 3 other ESTs contained in the UFS critical region. These results will facilitate the cloning and identification of the UFS gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号