首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The authors collected Sahelian sorghum landraces of Burkina Faso in 1984 and 74 of these accessions were characterized in 1985–1986 at Gampela in Burkina Faso (West Africa). The five races of cultivated sorghum were represented in this zone but 63.5% of the accessions were Guinea type. Great intra-and inter-accession variability was found. Plants were tall and had long panicles and small to intermediate seeds. There was a strong association between days-to-flowering, number of internodes, panicle length and height. The 100-kernel weight showed an antagonism with days to flowering and tillering. Multivariate analyses were made which enabled the accessions to be classified into four groups. The group most adapted to the sahelian zone, sahelian group, was semi-late, developed intermediate size of vegetative organs, had moderate tillering and had the best yield per plant.  相似文献   

2.
M Deu  F Rattunde  J Chantereau 《Génome》2006,49(2):168-180
We report here an analysis of the structure of genetic diversity in cultivated sorghums. A core collection of 210 landraces representative of race, latitude of origin, response to day length, and production system was analysed with 74 RFLP probes dispersed throughout the genome. Multivariate analyses showed the specificity of the subrace guinea margaritiferum, as well as the geographical and racial pattern of genetic diversity. Neighbour-joining analysis revealed a clear differentiation between northern and southern equatorial African accessions. The presence of Asian accessions in these 2 major geographical poles for sorghum evolution indicated two introductions of sorghum into Asia. Morphological race also influenced the pattern of sorghum genetic diversity. A single predominant race was identified in 8 of 10 clusters of accessions, i.e., 1 kafir, 1 durra, 4 guinea, and 2 caudatum clusters. Guinea sorghums, with the exception of accessions in the margaritiferum subrace, clustered in 3 geographical groups, i.e., western African, southern African, and Asian guinea clusters; the latter two appeared more closely related. Caudatum were mainly distributed in 2 clusters, the African Great Lakes caudatum cluster and those African caudatum originating from other African regions. This last differentiation appears related to contrasting photoperiod responses. These results aid in the optimization of sampling accessions for introgression in breeding programs.  相似文献   

3.
We present the first study of patterns of genetic diversity of sorghum landraces at the local scale. Understanding landrace diversity aids in deciphering evolutionary forces under domestication, and has applications in the conservation of genetic resources and their use in breeding programs. Duupa farmers in a village in Northern Cameroon distinguished 59 named sorghum taxa, representing 46 landraces. In each field, seeds are sown as a mixture of landraces (mean of 12 landraces per field), giving the potential for extensive gene flow. What level of genetic diversity underlies the great morphological diversity observed among landraces? Given the potential for gene flow, how well defined genetically is each landrace? To answer these questions, we recorded spatial patterns of planting and farmers’ perceptions of landraces, and characterized 21 landraces using SSR markers. Analysis using distance and clustering methods grouped the 21 landraces studied into four clusters. These clusters correspond to functionally and ecologically distinct groups of landraces. Within-landrace genetic variation accounted for 30% of total variation. The average F is over landraces was 0.68, suggesting high inbreeding within landraces. Differentiation among landraces was substantial and significant (F st = 0.36). Historical factors, variation in breeding systems, and farmers’ practices all affected patterns of genetic variation. Farmers’ practices are key to the maintenance, despite gene flow, of landraces with different combinations of agronomically and ecologically pertinent traits. They must be taken into account in strategies of conservation and use of genetic resources.  相似文献   

4.
Summary Over 300 landraces of pearl millet were collected in Burkina Faso and grown at the Coastal Plain Experiment Station in Tifton/GA. At Tifton, these landraces are predominantly tall and late-maturing. The photoperiod requirements of these landraces hinder evaluation of their performance in the field and their use in breeding programs. A conversion program has been initiated to transfer genes for dwarf stature and early flowering into the tall, late-maturing landraces. The inbred Tift 85DB is being used as a donor of genes for the dwarf and early characteristics, and was crossed to nine randomly selected landraces from Burkina Faso. The parents, F1, F2, and backcrosses to each parent were grown in the field and evaluated for plant height at anthesis and time in days from planting to anthesis. In general, plant height of F1s was taller than the tallest parent, and in all crosses the maturity of F1s was intermediate between the parents. Numbers of loci conferring height varied among crosses, ranging from 0 to 9.6, and averaged 1.6. Estimated numbers of loci conferring maturity ranged from 0 to 12.8 and averaged 3.4. Broad-sense heritability estimates for height and maturity averaged 60.2 and 65.7%, respectively. Corresponding narrow-sense estimates averaged 23.8 and 48.2%. Joint scaling tests revealed that additive-genetic effects were highly significant for both traits, but dominance and epistatic-genetic effects contributed to the inheritance of each trait in some crosses. The low gene numbers, high heritability estimates, and preponderance of additive-genetic effects suggest that selection for these traits should be effective.  相似文献   

5.
All crop species have been domesticated from their wild relatives, and geneticists are just now beginning to understand the consequences of artificial (human) selection on agronomic traits that are relevant today. The primary consequence is a basal loss of diversity across the genome, and an additional reduction in diversity for genes underlying traits targeted by selection. An understanding of attributes of the wild relatives may provide insight into target traits and valuable allelic variants for modern agriculture. This is especially true for maize (Zea mays ssp. mays), where its wild ancestor, teosinte (Z. mays ssp. parviglumis), is so strikingly different than modern maize. One obvious target of selection is the size and composition of the kernel. We evaluated kernel characteristics, kernel composition, and zein profiles for a diverse set of modern inbred lines, teosinte accessions, and landraces, the intermediate between inbreds and teosinte. We found that teosinte has very small seeds, but twice the protein content of landraces and inbred lines. Teosinte has a higher average alpha zein content (nearly 89% of total zeins as compared to 72% for inbred lines and 76% for landraces), and there are many novel alcohol-soluble proteins in teosinte relative to the other two germplasm groups. Nearly every zein protein varied in abundance among the germplasm groups, especially the methionine-rich delta zein protein, and the gamma zeins. Teosinte and landraces harbor phenotypic variation that will facilitate genetic dissection of kernel traits and grain quality, ultimately leading to improvement via traditional plant breeding and/or genetic engineering.  相似文献   

6.
Careful assessment of the comparative diversity for molecular markers and for potentially-useful morpho-agronomic traits is paramount to the analysis of a genome through the mapping of favorable genes. Sorghum (Sorghum bicolor ssp.bicolor) varieties are traditionally classified into five races on the basis of morphological traits, especially panicle and grain traits. Isozyme diversity has provided a new insight into genetic diversity, and showed a marked geographic structure. We performed RFLP analysis on 94 varieties, chosen to represent the main cross combinations (race × geographic origin), using 35 maize probes that detect polymorphism with at least one of the two restriction enzymesHindIII andXbaI. A total of 50 polymorphic probe-enzyme combinations yielded 158 polymorphic bands. The bicolor race appeared highly variable and included many rare markers. Among the other races multivariate analysis of the data differentiated six clusters corresponding, by decreasing magnitude of divergence, to: the margaritiferum types (a sub-race of race guinea); the guinea forms from western Africa; race caudatum; race durra; race kafir; and the guinea forms from southern Africa.The apparent geographic differentiation was related to the contrasting distribution of these races and to a higher similarity between races localized in southern Africa. The data agree with the current hypotheses on sorghum domestication but reveal associations between neutral markers and traits probably highly subjected to human selection. Whether such associations will be observed with other useful traits, and to what extent they are maintained by genetic linkage, is worth exploring.  相似文献   

7.
The large size of the sorghum [Sorghum bi-color (L.) Moench] landrace collection maintained by ICRISAT lead to the establishment of a core collection. Thus, three subsets of around 200 accessions were established from: (1) a random sampling after stratification of the entire landrace collection (L), (2) a selective sampling based on quantitative characters (PCS), and (3) a selection based on the geographical origin of landraces and the traits under farmers’ selection (T). An assessment was done of the genetic diversity retained by each sampling strategy using the polymorphisms at 15 microsatellite loci. The landraces of each subset were genotyped with three multiplex polymerase chain reactions (PCRs) of five fluorescent primer-pairs each with semi-automated allele sizing. The average allelic richness for each subset was equivalent (16.1, 16.3 and 15.4 alleles per locus for the subsets PCS, L, and T, respectively). The average genetic diversity was also comparable for the three subsets (0.81, 0.77 and 0.80 for the subsets PCS, L, and T, respectively). Allelic frequency distribution for each subset was compared with a chi-square test but few significant differences were observed. A high percentage of rare alleles (71 to 76% of 206 total rare alleles) was maintained in the three subsets. The global molecular diversity retained in each subset was not affected by a sampling procedure based upon phenotypic characters.  相似文献   

8.
Genetic diversity of 70 Mediterranean lentil (Lens culinaris ssp. culinaris Medicus) landraces was assessed using simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). These landraces were also assessed for variation in root and shoot traits and drought tolerance as estimated by relative water content (RWC), water losing rate (WLR) and wilting score (WS). Genetic diversity and clear differentiation of Moroccan landraces from those from northern Mediterranean regions (Italy, Turkey and Greece) were found. High genetic variation in root and shoot traits and traits related to drought tolerance was also observed. No relationship was found between drought tolerance of landraces and their geographic origin. Landraces with higher dry root biomass, chlorophyll content and root–shoot ratio were drought tolerant as evidenced by higher RWC and lower WLR and wilting severity. Kruskal–Wallis non-parametric test (K-W) was used to find SSRs and AFLPs associated with RWC, WLR and WS. Regression analysis showed six SSR and AFLP alleles explaining the highest phenotypic variation of RWC, WLR and WS (ranging from 21 to 50 % for SSRs and from 14 to 33 % for AFLPs). Functional genetic diversity analysis showed relationships between drought response of landraces and linked SSR and AFLP alleles to RWC, WLR and WS according to K-W test using canonical discriminant analysis. Our results confirm the feasibility of using association mapping to find DNA markers associated with drought tolerance in larger numbers of lentil landraces.  相似文献   

9.
An experiment was conducted in a greenhouse to estimate the level of morphological variability within 44 barley landraces (14 farmers' cultivars and 30 accessions) from north Shewa in Ethiopia. Four qualitative traits (spike type, kernel color, caryopsis type and spike density) were recorded. Variation in spike type (two-rowed, irregular or six-rowed) was high in many landraces. Variability in spike type within landraces from Debre Libanose, Kuyu and Girar Jarso was high. The highest mean frequencies of the six-row type were recorded for Ankober-Mezezo (85%) and Kimbibit (80.9%). The two-row types were dominant in Wuchale (53.3%), while they were absent at the Ankober-Mezezo, Debre Libanose and Kimbibit localities. A larger proportion of the irregular types occurred in Debre Libanose (71.3%), followed by Kuyu (62.6%). Diversity for kernel color was generally low except in landraces from Kuyu, but it was very high among landraces. White kernel color was predominant. The mean diversity index pooled over characters ranged from 0.12 ± 0.08 to 0.57 ± 0.11, and 11 landraces had a mean diversity larger than 0.50. Differences among landraces within localities were mostly highly significant for all characters except that of caryopsis type (covered or naked). Landraces from Girar Jarso, Wuchale, and Kuyu in particular differed significantly in spike type and kernel color. Unlike farmers' cultivars, the accessions were found to be more variable in spike type and kernel color. Moreover, the mean diversity indices pooled over characters were relatively higher in the accessions than within farmers' cultivars.  相似文献   

10.
In this study, genetic diversity among 177 oat (Avena sativa L.) accessions including both white and red oat landraces and 36 commercial cultivars was studied for simple sequence repeat (SSR) loci. Thirty-one genomic and expressed sequence tags (EST)-derived primer pairs were selected according to high polymorphism from an initial 66 SSR batch. Markers revealed a high level of polymorphism, detecting a total of 454 alleles. The average gene diversity for the whole sample was 0.29. Genetic similarity, calculated using the Dice coefficient, was used for cluster analysis, and principal component analysis was also applied. In addition, population structure using a Bayesian clustering approach identified discrete subpopulation based on allele frequency and showed similar clustering of oat genotypes in four groups. Accessions could be classified into four main clusters that clearly separated the commercial cultivars, the red oat landraces and two clusters of white oat landraces. Cultivars showed less diversity than the landraces indicating a reduction of genetic diversity during breeding, whereas white oat landraces showed higher diversity than red ones. The average polymorphic information content of 0.80 for the SSR loci indicated the usefulness of many of the SSR for genotype identification. In particular, two markers, MAMA5 and AM04, with a total of 50 alleles and a high discrimination power (>0.90), were sufficient to discriminate among all commercial cultivars studied highlighting their potential use for variety identification.  相似文献   

11.
A cross-sectional study was conducted in Bobo-Dioulasso, Burkina Faso, to identify the yeast diversity associated with the manufacture of dolo, a traditional fermented beverage of Burkina Faso. From sixty specimens spread onto chromogenic medium plates, sixty-two strains were isolated then identified using MALDI-TOF analysis. Seven yeast species were identified, Saccharomyces cerevisiae (39%) followed by Pichia manshurica (18%) being the most frequent. Forty-three percent of the samples contained Candida species, notably Candida albicans. In conclusion, the combined use of a chromogenic medium and MALDI-TOF analysis reveals a higher diversity in yeast species present in the dolo than previously thought.  相似文献   

12.
 Quantitative trait loci (QTLs) for grain quality, yield components and other traits were investigated in two Sorghum caudatum×guinea recombinant inbred line (RIL) populations. A total of 16 traits were evaluated (plant height, panicle length, panicle compactness, number of kernels/panicle, thousand-kernel weight, kernel weight/panicle, threshing percentage, dehulling yield, kernel flouriness, kernel friability, kernel hardness, amylose content, protein content, lipid content, germination rate and molds during germination and after harvest) and related to two 113- and 100-point base genetic maps using simple (SIM) and composite (CIM) interval mapping. The number, effects and relative position of QTLs detected in both populations were generally in agreement with the distributions, heritabilities and correlations among traits. Several chromosomal segments markedly affected multiple traits and were suspected of harbouring major genes. The positions of these QTLs are discussed in relation to previously reported studies on sorghum and other grasses. Many QTLs, depending on their relative effects and position, could be used as targets for marker-assisted selection and provide an opportunity for accelerating breeding programmes. Received: 14 February 1998 / Accepted: 4 March 1998  相似文献   

13.

Genetically modified (GM) maize has been grown and safely consumed on a global scale since its commercialization in 1996. However, questions have been raised about the potential impact that GM maize could have on native maize landraces in Mexico, which is the center of origin and diversity of maize. This research was conducted to evaluate potential changes to maize landraces in an unlikely event of transgene introgression. For this study, two GM traits that confer insect protection and herbicide tolerance in maize (MON 89034 and MON 88017), designated as VT3Pro, were introgressed into two Mexican landraces, Tuxpeño and Tabloncillo. Field trials were conducted across four environments to assess phenotypic characteristics, plant response to stressors, and kernel composition of landraces with and without VT3Pro traits. Furthermore, materials from four backcrossing generations were analyzed for segregation of these GM traits. Generally, no significant differences were observed between landraces with and without VT3Pro traits for the evaluated characteristics and the segregation analysis showed that GM traits, when introgressed into landraces, followed Mendelian principles. These results support the conclusion that, if inadvertently introgressed into landraces, VT3Pro traits are not expected to alter phenotypic or kernel characteristics, plant response to stressors (except for targeted insect protection and herbicide tolerance traits) and would segregate like any endogenous gene. These results should be taken into consideration when discussing benefits and risks associated with commercial production of GM maize hybrids in the centers of origin and diversity of maize.

  相似文献   

14.
利用1285份山西省高粱地方品种18个农艺性状的历史数据,通过比较不同取样方法、取样比例和聚类方法组合的构建方法,确定了"多次聚类偏离度取样法+15%取样比例+欧氏距离+最长距离法"为山西省高粱地方核心种质构建的方法.192份初选核心种质和所有样本的均值差异百分率、方差差异百分率、极差符合率和变异系数变化率分别为0、8...  相似文献   

15.
Maldandi is a popular sorghum variety for post-rainy or rabi cultivation in southern and central states of India, which is predominantly used for food purpose. Over time many landraces have been collected from these states which have vernacular connection with Maldandi. Genetic diversity among 82 Maldandi landraces, collected from such geographical regions was evaluated using both morphological (quantitative and qualitative) and SSR markers. In general, both morphological and SSR diversity revealed wide variability among the accessions studied. Euclidean distances based on 17 quantitative traits classified the accessions into two major clusters with two out groups, while the 19 qualitative traits clustered the accessions in one major cluster with six out groups. Sixteen out of 20 (80%) SSR markers detected polymorphism among the accessions with average PIC value of 0.36. Un-weighted neighbor joining clustering grouped the accessions into three clusters with 46, 16 and 17 accessions, respectively throwing three outliers. Average similarity coefficients of 0.62 and 0.34 based on morphological (qualitative) and SSR data indicated presence of wide variability among the Maldandi landraces. The standard check, M 35?C1 (a selection from the original Maldandi) could not be differentiated from EP 98, LG 2, LG 10, IS 4509 and IS 40791 based on qualitative data alone, while EP 54 and IS 33839 were indistinguishable from M 35?C1 solely using SSR markers. Either of the dendrogram threw unique grouping patterns with some identity. Thirteen promising Maldandi accessions selected based on field performance as well as morphological and molecular diversity could be used in the rabi improvement programme. SSR markers combined with morphological traits may effectively be used for designing breeding strategy and management of biodiversity and conservation of Maldandi genetic resources.  相似文献   

16.
Barnaud A  Trigueros G  McKey D  Joly HI 《Heredity》2008,101(5):445-452
The effect of mating system on genetic diversity is a major theme in plant evolutionary genetics, because gene flow plays a large role in structuring the genetic variability within and among populations. Understanding crop mating systems and their consequences for gene flow can aid in managing agricultural systems and conserving genetic resources. We evaluated the extent of pollen flow, its links with farming practices and its impact on the dynamics of diversity of sorghum in fields of Duupa farmers in Cameroon. Duupa farmers grow numerous landraces mixed in a field, a practice that favours extensive pollen flow. We estimated parameters of the mating system of five landraces representative of the genetic diversity cultivated in the study site, using a direct method based on progeny array. The multilocus outcrossing rate calculated from all progenies was 18% and ranged from 0 to 73% among progenies. Outcrossing rates varied greatly among landraces, from 5 to 40%. Our results also showed that individual maternal plants were usually pollinated by more than eight pollen donors, except for one landrace (three pollen donors). Although the biological traits of sorghum (inflorescence morphology, floral traits, phenology) and the spatial planting practices of Duupa farmers led to extensive pollen flow among landraces, selection exerted by farmers appears to be a key parameter affecting the fate of new genetic combinations from outcrossing events. Because both natural and human-mediated factors shape evolution in crop populations, understanding evolutionary processes and designing in situ conservation measures requires that biologists and anthropologists work together.  相似文献   

17.
Aim Woody vegetation patterns in African savannas north of the equator are closely connected to human presence, but the distinctions between natural and anthropogenic landscapes have not been clear to many observers. Criteria for identifying savanna landscapes on a continuum of intensity of anthropic impact are explored. Methods A key savanna tree species, Vitellaria paradoxa (Sapotaceae), was used as model for evaluating anthropic impact. Fruits harvested from tree populations across the species range were analysed for variation in traits valued by indigenous peoples. A simple selection index was used to scale tree populations from a hypothetical wild state to a hypothetical domesticated state. Index values were compared with trait values along climate zone gradients and evaluated in the context of indigenous savanna management practices and historical species distribution reports. Results Trait values such as fruit size and shape, pulp sweetness, and kernel fat content show a significant influence of temperature and rainfall. At the same time, the mean values of groups of traits vary perpendicular to the general climatic zone gradient. Selection index values between Vitellaria populations vary up to sixfold, with highest values in central Burkina Faso. Comparison of present day Vitellaria distribution with historical range limits show range expansion by human migration. Main conclusions The prevalence of major economic tree species in the savannas of Africa north of the equator is a strong indicator of human involvement in tree dispersal. This conclusion is supported by paleobotanical evidence and by recent Vitellaria range expansion as a result of human migration. The presence of high mean values of several Vitellaria fruit traits in central Burkina Faso suggests that selection for desired characteristics has occurred. The impact of indigenous savanna peoples on woody species composition and spatial distribution is probably much greater than usually thought and is the result of a deliberate strategy of altering the landscape to provide needed human resources.  相似文献   

18.
Hao C  Wang L  Ge H  Dong Y  Zhang X 《PloS one》2011,6(2):e17279
Two hundred and fifty bread wheat lines, mainly Chinese mini core accessions, were assayed for polymorphism and linkage disequilibrium (LD) based on 512 whole-genome microsatellite loci representing a mean marker density of 5.1 cM. A total of 6,724 alleles ranging from 1 to 49 per locus were identified in all collections. The mean PIC value was 0.650, ranging from 0 to 0.965. Population structure and principal coordinate analysis revealed that landraces and modern varieties were two relatively independent genetic sub-groups. Landraces had a higher allelic diversity than modern varieties with respect to both genomes and chromosomes in terms of total number of alleles and allelic richness. 3,833 (57.0%) and 2,788 (41.5%) rare alleles with frequencies of <5% were found in the landrace and modern variety gene pools, respectively, indicating greater numbers of rare variants, or likely new alleles, in landraces. Analysis of molecular variance (AMOVA) showed that A genome had the largest genetic differentiation and D genome the lowest. In contrast to genetic diversity, modern varieties displayed a wider average LD decay across the whole genome for locus pairs with r(2)>0.05 (P<0.001) than the landraces. Mean LD decay distance for the landraces at the whole genome level was <5 cM, while a higher LD decay distance of 5-10 cM in modern varieties. LD decay distances were also somewhat different for each of the 21 chromosomes, being higher for most of the chromosomes in modern varieties (<5 ~ 25 cM) compared to landraces (<5 ~ 15 cM), presumably indicating the influences of domestication and breeding. This study facilitates predicting the marker density required to effectively associate genotypes with traits in Chinese wheat genetic resources.  相似文献   

19.
Sorghum anthracnose caused by Colletotrichum sublineolum Henn. is one of the key diseases limiting sorghum production and productivity. Development of anthracnose‐resistant sorghum genotypes possessing yield‐promoting agronomic traits is an important breeding goal in sorghum improvement programs. The objective of this study was to determine the responses of diverse sorghum genetic resources for anthracnose resistance and agronomic traits to identify desirable lines for breeding. A total of 366 sorghum collections and three standard checks were field evaluated during the 2016 and 2017 cropping seasons. Lines were artificially inoculated with a virulent pure isolate of the pathogen. Anthracnose disease severity was assessed to calculate the area under disease progress curve (AUDPC). Agronomic traits such as panicle length (PL), panicle width (PW), head weight (HW) and thousand grain weight (TGW) were measured. Lines showed highly significant differences (p < .001) for anthracnose severity, AUDPC and agronomic traits. Among the collections 32 lines developed levels of disease severity between 15% and 30% in both seasons. The following sorghum landraces were selected: 71708, 210903, 74222, 73955, 74685, 74670, 74656, 74183, 234112, 69412, 226057, 214852, 71420, 71484, 200126, 71557, 75120, 71547, 220014, 228179, 16212, 16173, 16133, 69088, 238388, 16168 and 71570. These landraces had a relatively low anthracnose severity possessing farmer‐preferred agronomic traits. The selected genotypes are useful genetic resources to develop anthracnose‐resistant sorghum cultivars.  相似文献   

20.
Fonio millets (Digitaria exilis Stapf, D. iburua Stapf) are valuable indigenous staple food crops in West Africa. In order to investigate the genetic diversity and population differentiation in these millets, a total of 122 accessions from five countries (Benin, Burkina Faso, Guinea, Mali and Togo) were analysed by Amplified Fragment Length Polymorphisms (AFLPs). Genetic distance-based UPGMA clustering and principal coordinate analysis revealed a clear-cut differentiation between the two species and a clustering of D. exilis accessions in three major genetic groups fitting to their geographical origins. Shannon’s diversity index detected in D. iburua was low (H = 0.02). In D. exilis, the most widespread cultivated species, moderate levels of genetic diversity (Shannon’s diversity H = 0.267; Nei’s gene diversity H′ = 0.355) were detected. This genetic diversity is unequally distributed with the essential part observed in the Upper Niger River basin while a very low diversity is present in the Atacora mountain zone. Analysis of molecular variance (AMOVA) revealed that a large part of the genetic variation resides among the genetic groups (70%) and the country of origin (56%), indicating a clear genetic differentiation within D. exilis. Influence of mating system (inbreeding or apomixis), agricultural selection and ecological adaptations as well as founding effects in the genetic make-up of the landraces were visible and seemed to jointly contribute to the genetic structure detected in this species. The genetic variability found between the analysed accessions was weakly correlated with their phenotypic attributes. However, the genetic groups identified differed significantly in their mean performance for some agro-morphologic traits. The results obtained are relevant for fonio millets breeding, conservation and management of their genetic resources in West Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号