首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Plant growth and development are tightly linked to primary metabolism and are subject to natural variation. In order to obtain an insight into the genetic factors controlling biomass and primary metabolism and to determine their relationships, two Arabidopsis thaliana populations [429 recombinant inbred lines (RIL) and 97 introgression lines (IL), derived from accessions Col-0 and C24] were analyzed with respect to biomass and metabolic composition using a mass spectrometry-based metabolic profiling approach. Six and 157 quantitative trait loci (QTL) were identified for biomass and metabolic content, respectively. Two biomass QTL coincide with significantly more metabolic QTL (mQTL) than statistically expected, supporting the notion that the metabolic profile and biomass accumulation of a plant are linked. On the same basis, three out the six biomass QTL can be simulated purely on the basis of metabolic composition. QTL based on analysis of the introgression lines were in substantial agreement with the RIL-based results: five of six biomass QTL and 55% of the mQTL found in the RIL population were also found in the IL population at a significance level of P  ≤ 0.05, with >80% agreement on the allele effects. Some of the differences could be attributed to epistatic interactions. Depending on the search conditions, metabolic pathway-derived candidate genes were found for 24–67% of all tested mQTL in the database AraCyc 3.5. This dataset thus provides a comprehensive basis for the detection of functionally relevant variation in known genes with metabolic function and for identification of genes with hitherto unknown roles in the control of metabolism.  相似文献   

2.
Narang  Ram A.  Altmann  Thomas 《Plant and Soil》2001,234(1):91-97
Although phosphate acquisition efficiency (PAE) is of considerable agricultural importance, little is known about its inheritance. The objective of this study was to determine the inheritance of PAE-related morphological and physiological traits in Arabidopsis thaliana. C24 and Col-O, two Arabidopsis accessions differing in their abilities to acquire phosphate from hydroxyl phosphate, were crossed. The resulting hybrid showed superior acquisition of phosphate from hydroxylapatite when compared with either parent. The data suggest that the superiority of the F1 hybrid is due to the accumulation of favourable dominant genes at numerous loci. The hybrid inherited the long root hair length trait from C24 and the long root length trait of Col-O. In addition, the hybrid inherited enhanced phosphate transporter expression from C24. The analysis of morphological and physiological traits in this hybrid will be useful for evaluating and predicting PAE performance in other plant species.  相似文献   

3.
Heterosis has been widely used in agriculture to increase yield and to broaden adaptability of hybrid varieties and is applied to an increasing number of crop species. We performed a systematic survey of the extent and degree of heterosis for dry biomass in 63 Arabidopsis accessions crossed to three reference lines (Col-0, C24, and Nd). We detected a high heritability (69%) for biomass production in Arabidopsis. Among the 169 crosses analyzed, 29 exhibited significant mid-parent-heterosis for shoot biomass. Furthermore, we analyzed two divergent accessions, C24 and Col-0, the F(1) hybrids of which were shown to exhibit hybrid vigor, in more detail. In the combination Col-0/C24, heterosis for biomass was enhanced at higher light intensities; we found 51% to 66% mid-parent-heterosis at low and intermediate light intensities (60 and 120 micromol m(-2) s(-1)), and 161% at high light intensity (240 micromol m(-2) s(-1)). While at the low and intermediate light intensities relative growth rates of the hybrids were higher only in the early developmental phase (0-15 d after sowing [DAS]), at high light intensity the hybrids showed increased relative growth rates over the entire vegetative phase (until 25 DAS). An important finding was the early onset of heterosis for biomass; in the cross Col-0/C24, differences between parental and hybrid lines in leaf size and dry shoot mass could be detected as early as 10 DAS. The widespread occurrence of heterosis in the model plant Arabidopsis opens the possibility to investigate the genetic basis of this phenomenon using the tools of genetical genomics.  相似文献   

4.
Naturally occurring genetic variation for contents of cationic minerals in seeds of Arabidopsis thaliana was studied by screening a series of accessions (ecotypes) for Ca, Fe, K, Mg, Mn, Na, Zn, and for total contents of P. Variation was observed for all minerals and correlations between contents of various minerals were present, most noticeably between Ca and Mg, P and Mg, and P and Mn. The genetic basis of this variation was further studied by QTL analysis, using the Landsberg erecta (Ler) × Cape Verde Islands (Cvi) recombinant inbred population. For all minerals, except Na, one or more QTL were detected, explaining up to 78% of the variation. The map positions of several QTL were confirmed by analysis of near isogenic lines, carrying small Cvi introgressions in Ler background. Interesting co‐locations of QTL suggest pleiotropic effects, due to physiological coupling of the accumulation of certain minerals or to linkage of different genes. By comparing the map positions of QTL with the positions of genes expected to play a role in cation translocation, several candidate genes are suggested.  相似文献   

5.
Quantitative trait loci (QTLs) and epistasis for Arabidopsis thaliana aluminum (Al) tolerance were analyzed using a recombinant inbred (RI) population of 100 lines derived from a cross between Landsberg erecta and Columbia (Col). Root growth of the RI population was determined in hydroponics using solutions containing 0 or 4 micro M of AlCl(3 )and a series of nutrients, except P(i), at pH 5.0. Al tolerance was defined as relative root length [RRL: plus Al/minus Al (%)], and the RI lines ranged from 22.6 to 97.4% with a broad sense heritability of 0.99. Using the composite interval mapping method, two significant single factor QTLs (P<0.05) were detected by RRL on chromosomes 1 and 4, where the Col allele showed positive and negative effects on the Al tolerance. These QTLs could explain about 43% of the total variation of Al tolerance among the RI population. On the other hand, five epistatic loci pairs were identified by the complete pair-wise search method (P<0.0005). No single factor QTL and epistatic loci pairs were shared by the root length in the control and the RRL, suggesting that the loci identified by the RRL would be specific for Al treatment and controlling Al tolerance among the RI population.  相似文献   

6.
The genetic basis of heterosis in maize has been investigated in a number of studies but results have not been conclusive. Here, we compare quantitative trait loci (QTL) mapping results for grain yield, grain moisture, and plant height from three populations derived from crosses of the heterotic pattern Iowa Stiff Stalk Synthetic × Lancaster Sure Crop, investigated with the Design III, and analyzed with advanced statistical methods specifically developed to examine the genetic basis of mid-parent heterosis (MPH). In two populations, QTL analyses were conducted with a joint fit of linear transformations Z 1 (trait mean across pairs of backcross progenies) and Z 2 (half the trait difference between pairs of backcross progenies) to estimate augmented additive and augmented dominance effects of each QTL, as well as their ratio. QTL results for the third population were obtained from the literature. For Z 2 of grain yield, congruency of QTL positions was high across populations, and a large proportion of the genetic variance (~70%) was accounted for by QTL. This was not the case for Z 1 or the other two traits. Further, almost all congruent grain yield QTL were located in the same or an adjacent bin encompassing the centromere. We conclude that different alleles have been fixed in each heterotic pool, which in combination with allele(s) from the opposite heterotic pool lead to high MPH for grain yield. Their positive interactions very likely form the base line for the superior performance of the heterotic pattern under study.  相似文献   

7.
The biochemical diversity in the plant kingdom is estimated to well exceed 100,000 distinct compounds (Weckwerth, 2003) and 4000 to 20,000 metabolites per species seem likely (Fernie et al., 2004). In recent years extensive progress has been made towards the identification of enzymes and regulatory genes working in a complex network to generate this large arsenal of metabolites. Genetic loci influencing quantitative traits, e.g. metabolites or biomass, may be mapped to associated molecular markers, a method called quantitative trait locus mapping (QTL mapping), which may facilitate the identification of novel genes in biochemical pathways. Arabidopsis thaliana, as a model organism for seed plants, is a suitable target for metabolic QTL (mQTL) studies due to the availability of highly developed molecular and genetic tools, and the extensive knowledge accumulated on the metabolite profile. While intensely studied, in particular since the availability of its complete sequence, the genome of Arabidopsis still comprises a large proportion of genes with only tentative function based on sequence homology. From a total number of 33,518 genes currently listed (TAIR 9, http://www.arabidopsis.org), only about 25% have direct experimental evidence for their molecular function and biological process, while for more than 30% no biological data are available. Modern metabolomics approaches together with continually extended genomic resources will facilitate the task of assigning functions to those genes. In our previous study we reported on the identification of mQTL (Lisec et al., 2008). In this paper, we summarize the current status of mQTL analyses and causal gene identification in Arabidopsis and present evidence that a candidate gene located within the confidence interval of a fumarate mQTL (AT5G50950) encoding a putative fumarase is likely to be the causal gene of this QTL. The total number of genes molecularly identified based on mQTL studies is still limited, but the advent of multi-parallel analysis techniques for measurement of gene expression, as well as protein and metabolite abundances and for rapid gene identification will assist in the important task of assigning enzymes and regulatory genes to the growing network of known metabolic reactions.  相似文献   

8.
Seed germination is a key life history transition for annual plants and partly determines lifetime performance and fitness. Germination speed, the elapsed time for a nondormant seed to germinate, is a poorly understood trait important for plants’ competitiveness and fitness in fluctuating environments. Germination speed varied by 30% among 18 Arabidopsis thaliana populations measured, and exhibited weak negative correlation with flowering time and seed weight, with significant genotype effect (P < 0.005). To dissect the genetic architecture of germination speed, we developed the extreme QTL (X‐QTL) mapping method in A. thaliana. The method has been shown in yeast to increase QTL mapping power by integrating selective screening and bulk‐segregant analysis in a very large mapping population. By pooled genotyping of top 5% of rapid germinants from ~100 000 F3 individuals, three X‐QTL regions were identified on chromosomes 1, 3 and 4. All regions were confirmed as QTL regions by sequencing 192 rapid germinants from an independent F3 selection experiment. Positional overlaps were found between X‐QTLs and previously identified seed, life history and fitness QTLs. Our method provides a rapid mapping platform in A. thaliana with potentially greater power. One can also relate identified X‐QTLs to the A. thaliana physical map, facilitating candidate gene identification.  相似文献   

9.
10.
Whole-genome QTL analysis for MAGIC   总被引:2,自引:0,他引:2  

Key message

An efficient whole genome method of QTL analysis is presented for Multi-parent advanced generation integrated crosses.

Abstract

Multi-parent advanced generation inter-cross (MAGIC) populations have been developed for mice and several plant species and are useful for the genetic dissection of complex traits. The analysis of quantitative trait loci (QTL) in these populations presents some additional challenges compared with traditional mapping approaches. In particular, pedigree and marker information need to be integrated and founder genetic data needs to be incorporated into the analysis. Here, we present a method for QTL analysis that utilizes the probability of inheriting founder alleles across the whole genome simultaneously, either for intervals or markers. The probabilities can be found using three-point or Hidden Markov Model (HMM) methods. This whole-genome approach is evaluated in a simulation study and it is shown to be a powerful method of analysis. The HMM probabilities lead to low rates of false positives and low bias of estimated QTL effect sizes. An implementation of the approach is available as an R package. In addition, we illustrate the approach using a bread wheat MAGIC population.  相似文献   

11.
Summary Auxotrophic mutants genetically blocked at different steps of the thiamine pathway dramatically demonstrate the biochemical mechanism of hybrid vigor due to simple and perfect dominance at two unlinked loci. Heteroallelic hybrids of mutants requiring the pyrimidine moiety of thiamine display allelic complementation and thus furnish clear biochemical and genetic evidence for the superdominance hypothesis. Hybrids of low- and high-temperature-requiring leaky mutants demonstrate that heterozygosity at a single gene locus may confer developmental homeostasis on the heteroallelic combinations superior to that of the homoallelic parents. The results of this study on the autogamous plant, Arabidopsis, and of recent reports on the outbreeding species, Drosophila, render untenable the generalization that high versus low temperature dependent heterosis is determined by the breeding system.Zusammenfassung Auxotrophe Arabidopsis-Mutanten, bei denen verschiedene Schritte der Thiaminsynthese genetisch blockiert sind, lassen deutlich den biochemischen Mechanismus der Heterosis erkennen, der auf einfacher und völliger Dominanz in zwei ungekoppelten Loci beruht. Heteroallele Hybriden von Mutanten, die den Pyrimidinanteil des Thiamins benötigen, zeigen allele Komplementation und liefern damit den klaren biochemischen und genetischen Beweis für die Superdominanz-Hypothese. Hybriden von leaky-Mutanten, die einen niedrigen bzw. hohen Temperaturbedarf haben, zeigen, daß Heterozygotie in einem einzelnen Genlocus den heteroallelen Kombinationen eine Entwicklungshomeostasie verleihen kann, die größer als die der homoallelen Eltern ist. Die Ergebnisse unserer Untersuchungen an der autogamen Pflanze Arabidopsis und neuere Ergebnisse bei Drosophila lassen die Verallgemeinerung, daß die Art der Temperaturabhängigkeit der Heterosis durch das Zuchtsystem bestimmt wird, nicht zu.Contribution from the Missouri Agricultural Experiment Station. Journal Series No. 5475 Approved by the Director.This work was supported by U.S. Atomic Energy Commission Contract AT-(11-1)-16 and by National Science Foundation Grant GB 6577.  相似文献   

12.
Phosphorus (P) deficiency in soils is a major limiting factor for plant growth worldwide. Plants have developed adaptive strategies in response to P deficiency. The objective of this study was to map quantitative trait loci (QTL) for P efficiency using a recombinant inbred (RI) population consisting of 124 lines derived from a cross between Brassica napus P-inefficient cv. B104-2 and P-efficient cv. Eyou Changjia. Six traits (shoot dry weight, root dry weight, root/shoot ratio, P concentration, shoot P uptake and shoot P use efficiency) at vegetative stage were examined under high P (HP, 1 mM) and low P (LP, 5 ??M) conditions during three separate experimental trial periods. Their relative values (i.e., the ratio of a trait value under the LP condition to that under the HP condition) of these six traits were also determined. Eyou Changjia produced more biomass and acquired more P under the LP condition and, thus, had a higher relative dry weight and relative P uptake than B104-2, indicating Eyou Changjia was high P efficiency. A total of 71 QTL were detected on 13 linkage groups, including 28 QTL under the LP condition, 22 QTL under the HP condition and 21 QTL for relative traits. Nineteen and nine QTL were specific for the LP and HP conditions, respectively, suggesting that different mechanisms existed under the two P condition. Twelve of the twenty-one QTL for relative traits co-localized with QTL identified under the two P conditions. In addition, 18 orthologous genes involved in the P metabolic pathway of Arabidopsis were in silico mapped to the QTL confidence intervals identified in B. napus by comparative genomic analysis. These QTL and their corresponding candidate genes should be further investigated to better understand P efficiency in B. napus.  相似文献   

13.
QTL analysis for capsaicinoid content in Capsicum   总被引:1,自引:0,他引:1  
Pungency or “heat” found in Capsicum fruit results from the biosynthesis and accumulation of alkaloid compounds known as capsaicinoids in the dissepiment, placental tissue adjacent to the seeds. Pepper cultivars differ with respect to their level of pungency because of quantitative and qualitative variation in capsaicinoid content. We analyzed the segregation of three capsaicinoids: capsaicin, dihydrocapsaicin and nordihydrocapsaicin in an inter-specific cross between a mildly pungent Capsicum annuum ‘NuMex RNaky’ and the wild, highly pungent C. frutescens accession BG2814-6. F3 families were analyzed in three trials in California and in Israel and a dense molecular map was constructed comprised mostly of loci defined by simple sequence repeat (SSR) markers. Six QTL controlling capsaicinoid content were detected on three chromosomes. One gene from the capsaicinoid biosynthetic pathway, BCAT, and one random fruit EST, 3A2, co-localized with QTL detected in this study on chromosomes 3 and 4. Because one confounding factor in quantitative determination of capsaicinoid is fruit size, fruit weight measurements were taken in two trials. Two QTL controlling fruit weight were detected, however, they did not co-localize with QTL detected for capsaicinoid content. The major contribution to the phenotypic variation of capsaicinoid content (24–42% of the total variation) was attributed to a digenic interaction between a main-effect QTL, cap7.1, and a marker located on chromosome 2 that did not have a main effect on the trait. A second QTL, cap7.2 is likely to correspond to the QTL, cap, identified in a previous study as having pronounced influence on capsaicinoid content.  相似文献   

14.
Klasen JR  Piepho HP  Stich B 《Heredity》2012,108(6):626-632
A major goal of today's biology is to understand the genetic basis of quantitative traits. This can be achieved by statistical methods that evaluate the association between molecular marker variation and phenotypic variation in different types of mapping populations. The objective of this work was to evaluate the statistical power of quantitative trait loci (QTL) detection of various multi-parental mating designs, as well as to assess the reasons for the observed differences. Our study was based on an empirical data of 20 Arabidopsis thaliana accessions, which have been selected to capture the maximum genetic diversity. The examined mating designs differed strongly with respect to the statistical power to detect QTL. We observed the highest power to detect QTL for the diallel cross with random mating design. The results of our study suggested that performing sibling mating within subpopulations of joint-linkage mapping populations has the potential to considerably increase the power for QTL detection. Our results, however, revealed that using designs in which more than two parental alleles segregate in each subpopulation increases the power even more.  相似文献   

15.
In light of rising energy costs, lignocellulosic ethanol has been identified as a renewable alternative to petroleum-based transportation fuels. In an attempt to reach government mandated ethanol production levels, potential plant biofeedstock candidates have been investigated, and cold-tolerant, perennial accessions within the C4 grass genus Miscanthus have been identified as leading contenders in the Midwestern US. To facilitate the development of improved cultivars through marker-assisted breeding, a quantitative trait locus (QTL) study was conducted on a full-sib, F1 mapping population segregating for flowering time, height, leaf width, and yield using a genetic map consisting of 846 segregating SNP and SSR markers. This was a 3 year study investigating the genetic architecture underlying traits important to biomass production in a population of 221 progeny from a cross between M. sinensis ‘Grosse Fountaine’ and M. sinensis ‘Undine’ established in the spring of 2010; 72 QTLs with LOD scores above the genome-wide, permuted threshold equivalent to a P-value of 0.05 were identified across 13 traits. Of the 36 QTLs identified in 2011, 22 were detected again the following year. Both the use of spring emergence and vigor rating as a covariate to account for variation related to differences in establishment increased the power to detect QTLs in the 2 year establishment period. Finally, a dry period in the middle of the 2012 growing season suggested that yield declines were due to a decrease in tiller diameter.  相似文献   

16.
17.
Two sets of rice materials, 166 RILs derived from a cross between Milyang 23 (Korean indica-type rice) and Tong 88-7 (japonica Rice), and BC1F1 hybrids derived from crosses between the RILs and the female parent, Milyang 23, were produced to identify QTLs for heterosis of yield and yield-related traits. The QTLs were detected from three different phenotype data sets including the RILs, BC1F1 hybrids, and mid-parental heterosis data set acquired from the definition of mid-parental heterosis. A total of 57 QTLs were identified for nine traits. Of eight QTLs detected for yield heterosis, five overlapped with other heterosis QTLs for yield-related traits such as spikelet number per panicle, days to heading, and spikelet fertility. Four QTLs for yield heterosis, gy1.1, py6, gy10, and py11, were newly identified in this study. We identified a total of 17 EpQTLs for yield heterosis that explain 21.4 ?? 59.0 % of total phenotypic variation, indicating that epistatic interactions may play an important role in heterosis.  相似文献   

18.
A segregating F2 population of Arabidopsis thaliana derived from a cross between the late-flowering ecotype Hannover/Münden (HM) and the early-flowering ecotype Wassilewskija (WS) was analyzed for flowering time and other morphological traits. Two unlinked quantitative trait loci (QTLs) affecting days to first flower (DFF-a and DFF-b) mapped to chromosome 5. QTLs which affect node number (NN), leaf length at flowering (LLF), and leaf length at 35 days (LL35) also mapped to chromosome 5; LLF-a, LL35-a, NN-a map to the same region of chromosome 5 as DFF-a; LLF-b and LL35-bmap to the same region of chromosome 5 as DFF-b. Another QTL affecting leaf length at flowering (LLF-c) maps to chromosome 3. The proximity of DFF-a, LLF-a, LL35-a and NN-a, as well as the similarity in gene action among these QTLs (additivity), suggest that they may be pleiotropic consequences of a single gene at this locus. Similarly, LL35-b and LLF-b map near each other and both display recessive gene action, again suggesting the possibility of pleiotropy. DFF-b, which also maps near LL35-b and LLF-b, displays largely additive gene action (although recessive gene action could not be ruled out). This suggests that DFF-b may represent a different gene from LL35-b and/or LLF-b. DFF-a maps near two previously identified mutants: co (which also affects flowering time and displays gene action consistent with additivity) and flc. Similar map locations and gene actions of QTLs affecting the correlated traits DFF, LLF, LL35 and NN suggest that these genomic regions harbor naturally occurring allelic variants involved in the general transition of the plant from vegetative to reproductive growth.  相似文献   

19.

Background

Even when phenotypic differences are large between natural or domesticated strains, the underlying genetic basis is often complex, and causal genomic regions need to be identified by quantitative trait locus (QTL) mapping. Unfortunately, QTL positions typically have large confidence intervals, which can, for example, lead to one QTL being masked by another, when two closely linked loci are detected as a single QTL. One strategy to increase the power of precisely localizing small effect QTL, is the use of an intercross approach before inbreeding to produce Advanced Intercross RILs (AI-RILs).

Methodology/Principal Findings

We present two new AI-RIL populations of Arabidopsis thaliana genotyped with an average intermarker distance of 600 kb. The advanced intercrossing design led to expansion of the genetic map in the two populations, which contain recombination events corresponding to 50 kb/cM in an F2 population. We used the AI-RILs to map QTL for light response and flowering time, and to identify segregation distortion in one of the AI-RIL populations due to a negative epistatic interaction between two genomic regions.

Conclusions/Significance

The two new AI-RIL populations, EstC and KendC, derived from crosses of Columbia (Col) to Estland (Est-1) and Kendallville (Kend-L) provide an excellent resource for high precision QTL mapping. Moreover, because they have been genotyped with over 100 common markers, they are also excellent material for comparative QTL mapping.  相似文献   

20.
Syed NH  Chen ZJ 《Heredity》2005,94(3):295-304
The underlying mechanisms for hybrid vigor or heterosis are elusive. Here we report a population of recombinant inbred lines (RILs), derived from the two ecotypes, Col and Ler, which can serve as a permanent resource for studying the molecular basis of hybrid vigor in Arabidopsis. Using a North Carolina mating design III (NCIII), we determined the additive and dominant nature of gene action in this population. We detected heterosis among crosses of RILs with one of the two parents (Col and Ler) and analyzed genotypes and heterozygosities for RILs and test cross families (RILs crossed to Col and Ler) using a total of 446 published molecular markers. The performance of RILs and additive and dominant components in the test cross families were used to analyze QTLs for 16 traits, using QTL cartographer and composite interval mapping with 1,000 permutations for each trait. Our data suggest that locus-specific and/or genome-wide differential heterozygosity, including epistasis, plays an important role in the generation of the observed heterosis. Furthermore, the hybrid vigor occurred between two closely related ecotypes, and provides a general mechanism for novel variation generated between genetically similar materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号