首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rymv1-2 and rymv1-3 alleles of the RYMV1 resistance to Rice yellow mottle virus (RYMV), coded by an eIF(iso)4G1 gene, occur in a few cultivars of the Asiatic (Oryza sativa) and African (O. glaberrima) rice species, respectively. The most salient feature of the resistance breaking (RB) process is the converse genetic barrier to rymv1-2 and rymv1-3 resistance breakdown. This specificity is modulated by the amino acid (glutamic acid vs. threonine) at codon 49 of the Viral Protein genome-linked (VPg), a position which is adjacent to the virulence codons 48 and 52. Isolates with a glutamic acid (E) do not overcome rymv1-3 whereas those with a threonine (T) rarely overcome rymv1-2. We found that isolates with T49 had a strong selective advantage over isolates with E49 in O. glaberrima susceptible cultivars. This explains the fixation of the mutation T49 during RYMV evolution and accounts for the diversifying selection estimated at codon 49. Better adapted to O. glaberrima, isolates with T49 are also more prone than isolates with E49 to fix rymv1-3 RB mutations at codon 52 in resistant O. glaberrima cultivars. However, subsequent genetic constraints impaired the ability of isolates with T49 to fix rymv1-2 RB mutations at codons 48 and 52 in resistant O. sativa cultivars. The origin and role of the amino acid at codon 49 of the VPg exemplifies the importance of historical contingencies in the ability of RYMV to overcome RYMV1 resistance.  相似文献   

2.

Key message

A new resistance gene against Rice yellow mottle virus was identified and mapped in a 15-kb interval. The best candidate is a CC-NBS-LRR gene.

Abstract

Rice yellow mottle virus (RYMV) disease is a serious constraint to the cultivation of rice in Africa and selection for resistance is considered to be the most effective management strategy. The aim of this study was to characterize the resistance of Tog5307, a highly resistant accession belonging to the African cultivated rice species (Oryza glaberrima), that has none of the previously identified resistance genes to RYMV. The specificity of Tog5307 resistance was analyzed using 18 RYMV isolates. While three of them were able to infect Tog5307 very rapidly, resistance against the others was effective despite infection events attributed to resistance-breakdown or incomplete penetrance of the resistance. Segregation of resistance in an interspecific backcross population derived from a cross between Tog5307 and the susceptible Oryza sativa variety IR64 showed that resistance is dominant and is controlled by a single gene, named RYMV3. RYMV3 was mapped in an approximately 15-kb interval in which two candidate genes, coding for a putative transmembrane protein and a CC-NBS-LRR domain-containing protein, were annotated. Sequencing revealed non-synonymous polymorphisms between Tog5307 and the O. glaberrima susceptible accession CG14 in both candidate genes. An additional resistant O. glaberrima accession, Tog5672, was found to have the Tog5307 genotype for the CC-NBS-LRR gene but not for the putative transmembrane protein gene. Analysis of the cosegregation of Tog5672 resistance with the RYMV3 locus suggests that RYMV3 is also involved in Tog5672 resistance, thereby supporting the CC-NBS-LRR gene as the best candidate for RYMV3.
  相似文献   

3.
Surveys were conducted in rice fields in Benin, Cote d'Ivoire, Mali, Nigeria, Togo and Niger to assess the importance of Rice yellow mottle virus (RYMV). Diseased leaf samples were collected. In Togo, surveys were made mainly in the southern part of the country, and in Benin, all areas where rice is grown were covered. Leaf samples were serologically confirmed by ACP ELISA as bearing RYMV, propagated and all conserved. One hundred and forty‐eight (148) Beninese and 27 Togolese strains were serotyped. They were also phenotyped on three susceptible accessions including IR 64, four resistant lines with known alleles on RYMV 1 gene namely TOG 5681 (rymv 1‐3), TOG 5672 (rymv 1‐4 and RYMV 2), TOG 5674 (rymv 1.5) and Gigante (rymv 1‐2). RYMV spots with 9–100% incidences were identified. Serotyping by triple antibody sandwich (TAS) ELISA indicated that two main groups S1 and S2 coexisted in Benin with S1 being prevalent. In Togo, 26 strains were S1 and only one was S2. Phenotyping of the 148 Beninese and 27 Togolese indicated that they all attacked the three susceptible accessions, while TOG 5681 (rymv 1‐3), TOG 5672 (rymv 1‐4 and RYMV 2), TOG 5674 (rymv 1‐5) and Gigante (rymv 1‐2) remained symptomless. The use of the genes/alleles above in these countries against the disease is discussed. Three representative Beninese strains were selected to screen 48 accessions for disease resistance. Nine accessions were as susceptible as IR 64 to all strains while six (NERICA 9, NERICA 12, NERICA 13, TOG 7291, WAB56‐50, CG 14 and Moroberekan) were very resistant. Susceptibility of the six ARICA and resistance of some NERICA lines could be explained by the fact that one or both parental lines were, respectively, susceptible or resistant to the strains.  相似文献   

4.
Rice yellow mottle virus (RYMV) is the most harmful virus that affects irrigated and lowland rice in Africa. The RBe24 isolate of the virus is the most pathogenic strain in Benin. A total of 79 genotypes including susceptible IR64 (Oryza sativa) and the resistant TOG5681 (O. glaberrima) as checks were screened for their reactions to RBe24 isolate of RYMV and the effects of silicon on the response of host plants to the virus investigated. The experiment was a three-factor factorial consisting of genotypes, inoculation level (inoculated vs. non-inoculated), and silicon dose (0, 5, and 10 g/plant) applied as CaSiO3 with two replications and carried out twice in the screen house. Significant differences were observed among the rice genotypes. Fifteen highly resistant and eight resistant genotypes were identified, and these were mainly O. glaberrima. Silicon application did not affect disease incidence and severity at 21 and 42 days after inoculation (DAI); it, however, significantly increased plant height of inoculated (3.6% for 5 g CaSiO3/plant and 6.3% for 10 g CaSiO3/plant) and non-inoculated (1.9% for 5 g CaSiO3/plant and 4.9% for 10 g CaSiO3/plant) plants at 42 DAI, with a reduction in the number of tillers (12.3% for both 5 and 10 g CaSiO3/plant) and leaves (26.8% for 5 g CaSiO3/plant and 28% for 10 g CaSiO3/plant) under both inoculation treatments. Our results confirm O. glaberrima germplasm as an important source of resistance to RYMV, and critical in developing a comprehensive strategy for the control of RYMV in West Africa.  相似文献   

5.
In order to estimate genetic relationships of the AA-genome Oryza species, RAPD and SSR analyses were performed with 45 accessions, including 13 cultivated varieties (eight Oryza sativa and five Oryza glaberrima) and 32 wild accessions (nine Oryza rufipogon, seven Oryza nivara, three Oryza glumaepatula, four Oryza longistaminata, six Oryza barthii, and three Oryza meridionalis). A total of 181 clear and repeatable bands were amplified from 27 selected RAPD primers, and 101 alleles were detected from 29 SSR primer pairs. The dendrogram constructed using UPGMA from a genetic-similarity matrix based on the RAPD data supported the clustering of distinct five groups with a few exceptions: O. rufipogon/O. nivara/O. meridionalis, O. barthii/O. glaberrima, O. glumaepatula, O. sativa and O. longistaminata. The dendrogram based on the SSR analysis showed a more-complicated genetic variation pattern, but the O. longistaminata and O. barthii/O. glaberrima accessions were consistently separated from all other accessions, indicating significant differentiation of the African AA-genome Oryza species. For accessions in the O. rufipogon/O. nivara/O. sativa complex, it is apparent that geographical isolation has played an important role in differentiation of the Asian AA-genome Oryza taxa. It is also demonstrated from this study that both RAPD and SSR analyses are powerful methods for detecting polymorphisms among the different AA-genome Oryza accessions. However, the RAPD analysis provides a more-informative result in terms of the overall genetic relationships at the species level compared to the SSR analysis. The SSR analysis effectively reveals diminutive variation among accessions or individuals within the same species, given approximately the same number of primers or primer-pairs used in the studies.Communicated by Q. Zhang  相似文献   

6.
7.
The rice nucleotide-binding site–leucine-rich repeat (NBS-LRR)-encoding resistance (R) gene Pi9 confers broad-spectrum resistance to the fungal pathogen Magnaporthe oryzae. The Pi9 locus comprises many NBS-LRR-like genes and is an ancient locus that is highly conserved in cultivated and wild rice species. To understand the genetic variation and molecular evolutionary mechanism of the Pi9 alleles in different rice species, we studied five AA genome Oryza species including two cultivated rice species (Oryza sativa and Oryza glaberrima) and three wild rice species (Oryza nivara, Oryza rufipogon, and Oryza barthii). A 2.9-kb fragment spanning the NBS-LRR core region of the Pi9 gene was amplified and sequenced from 40 accessions. Sequence comparison revealed that the Pi9 alleles had an intermediate-diversified nucleotide polymorphism among the AA genome Oryza species. Sequence variations were more abundant in the LRR region than in the NBS region, indicating that the LRR region has played a more important role for the evolution of the Pi9 alleles. Furthermore, positive selection was found to be the main force promoting the divergence of the Pi9 alleles, especially in the LRR region. Our results reveal the characteristics and evolutionary dynamics of the Pi9 alleles among the two cultivated and three wild rice species.  相似文献   

8.
This study assessed the effects of genotype variations in two cultivated rice species: Oryza glaberrima and Oryza sativa on the biology and galling characteristics of the African rice gall midge (AfRGM), Orseolia oryzivora Harris and Gagné. The study was conducted in the screen house at ambient temperature (27 ± 3°C), 70 ± 5% relative humidity and 12:12 h photoperiod. Shoot galling, the most visible response of rice genotypes to attack by the insect, was greatly suppressed, being only 0.7 cm long in the O. glaberrima genotypes compared to 34 cm in the O. sativa species. Larval mortality (70–88%) in the O. glaberrima genotypes was significantly higher at the first instar compared to O. sativa. Gall setting was confirmed to be an irredeemable tiller loss. Even in the susceptible O. sativa genotypes, where many larvae may colonize a tiller, only one survived to the second instar. Resistant and susceptible rice genotypes had significantly different effects on the development and reproductive anatomy of the AfRGM. The female reproductive anatomy which consists of two ovaries, each with a potential complement of 192 eggs was affected by interspecific variation in rice genotypes causing reduced potential fecundity (32); morphological distortion, 60% reduction of egg size of F1 emergent in O. glaberrima compared to emergent from the susceptible O. sativa genotypes.  相似文献   

9.
Summary Phylogenetic relationship of the cultivated rices Oryza sativa and O. glaberrima with the O. perennis complex, distributed on the three continents of Asia, Africa and America, and O. australiensis has been studied using Fraction 1 protein and two repeated DNA sequences as markers. Fraction 1 protein isolated from the leaf tissue of accessions of different species was subjected to isoelectric focusing. All the species studied have similar nuclear-encoded small subunit polypeptides and chloroplast-encoded large subunit polypeptides, except two of the O. perennis accessions from South America and O. australiensis, which have a different pattern for the chloroplast subunit. Two DNA sequences were isolated from Eco R1 restriction endonuclease digests of total DNA from O. sativa. One of the sequences has been characterized as highly repeated satellite DNA, and the other one as a moderately repeated DNA sequence. These sequences were used as probes in DNA/DNA hybridization with restriction endonuclease digested DNA from some accessions of the different species. Those accessions that are divergent for large subunit polypeptides of Fraction 1 protein (O. australiensis and two of the four South American O. perennis accessions) also lack the satellite DNA and have a different hybridization pattern with the moderately repeated sequence. All other accessions, irrespective of their geographical origin, are similar. We propose that various accessions of O. perennis from Africa and Asia are closely related to O. sativa and O. glaberrima, and that the dispersal of cultivated and O. perennis rices to different continents may be quite recent. The American O. perennis is a heterogeneous group. Some of the accessions ascribed to this group are closely related to the Asian and African O. perennis, while others have diverged.  相似文献   

10.
Asian cultivated rice (Oryza sativa L.) and African cultivated rice (Oryza glaberrima Steud.) are the two main cultivated rice species in the world, with strong heterosis in their F1 hybrids. However, hybrid sterility is a major barrier, although significant heterosis has been observed. In this study, an F1 pollen semi-sterility locus, S19, was identified on rice chromosome 3 by using near-isogenic lines derived from repeated backcross and marker-assisted selection. The typical pollen semi-sterility was observed in F1 hybrids between S19-NIL and Dianjingyou 1. Cytological study of pollen developmental stages indicated that pollen abortion occurred at the late binucleate stage because of a starch accumulation obstacle in some pollen grains. Molecular analysis revealed that the semi-sterility was caused by the abortion of most male gametophytes carrying the S19 allele from the japonica variety Dianjingyou 1. In a population of 12,780 F2 plants derived from S19-NIL/Dianjingyou 1, the S19 locus was fine-mapped to a chromosomal region of 54 kb based on BAC clones of cv. Nipponbare. Interestingly, an addition of a DNA fragment of about 89 kb to the 54-kb region was found in S19-NIL based on BAC clones of O. glaberrima. Gene prediction analysis identified 12 open reading frames (ORF) based on the region of Dianjingyou 1, while 32 ORFs were predicted in S19-NIL. Map-based cloning of this gene will help us to understand the underlying mechanism of hybrid sterility between the two cultivated rice species.  相似文献   

11.
Here we present the genomic sequence of the African cultivated rice, Oryza glaberrima, and compare these data with the genome sequence of Asian cultivated rice, Oryza sativa. We obtained gene‐enriched sequences of O. glaberrima that correspond to about 25% of the gene regions of the O. sativa (japonica) genome by methylation filtration and subtractive hybridization of repetitive sequences. While patterns of amino acid changes did not differ between the two species in terms of the biochemical properties, genes of O. glaberrima generally showed a larger synonymous–nonsynonymous substitution ratio, suggesting that O. glaberrima has undergone a genome‐wide relaxation of purifying selection. We further investigated nucleotide substitutions around splice sites and found that eight genes of O. sativa experienced changes at splice sites after the divergence from O. glaberrima. These changes produced novel introns that partially truncated functional domains, suggesting that these newly emerged introns affect gene function. We also identified 2451 simple sequence repeats (SSRs) from the genomes of O. glaberrima and O. sativa. Although tri‐nucleotide repeats were most common among the SSRs and were overrepresented in the protein‐coding sequences, we found that selection against indels of tri‐nucleotide repeats was relatively weak in both African and Asian rice. Our genome‐wide sequencing of O. glaberrima and in‐depth analyses provide rice researchers not only with useful genomic resources for future breeding but also with new insights into the genomic evolution of the African and Asian rice species.  相似文献   

12.
13.
Species misclassification (misidentification) and handling errors have been frequently reported in various plant species conserved at diverse gene banks, which could restrict use of germplasm for correct purpose. The objectives of the present study were to (i) determine the extent of genotyping error (reproducibility) on DArTseq-based single-nucleotide polymorphisms (SNPs); (ii) determine the proportion of misclassified accessions across 3134 samples representing three African rice species complex (Oryza glaberrima, O. barthii, and O. longistaminata) and an Asian rice (O. sativa), which are conserved at the AfricaRice gene bank; and (iii) develop species- and sub-species (ecotype)-specific diagnostic SNP markers for rapid and low-cost quality control (QC) analysis. Genotyping error estimated from 15 accessions, each replicated from 2 to 16 times, varied from 0.2 to 3.1%, with an overall average of 0.8%. Using a total of 3134 accessions genotyped with 31,739 SNPs, the proportion of misclassified samples was 3.1% (97 of the 3134 accessions). Excluding the 97 misclassified accessions, we identified a total of 332 diagnostic SNPs that clearly discriminated the three indigenous African species complex from Asian rice (156 SNPs), O. longistaminata accessions from both O. barthii and O. glaberrima (131 SNPs), and O. sativa spp. indica from O. sativa spp. japonica (45 SNPs). Using chromosomal position, minor allele frequency, and polymorphic information content as selection criteria, we recommended a subset of 24 to 36 of the 332 diagnostic SNPs for routine QC genotyping, which would be highly useful in determining the genetic identity of each species and correct human errors during routine gene bank operations.  相似文献   

14.
Sakagami J  Joho Y  Ito O 《Annals of botany》2009,103(2):171-180

Background and Aims Oryza glaberrima

is widely grown in flood-prone areas of African river basins and is subject to prolonged periods of annual submergence. The effects of submergence on shoot elongation, shoot biomass, leaf area and CO2 uptake were studied and compared with those of O. sativa.

Methods

A wide selection of lines of O. sativa and O. glaberrima, including some classified as submergence tolerant, were compared in field and pot experiments. Plants were submerged completely for 31 d in a field experiment, and partially or completely for 37 d in a pot experiment in a growth chamber.

Key Results

Leaf elongation and growth in shoot biomass during complete submergence in the field were significantly greater in O. glaberrima than in O. sativa. So-called submergence-tolerant cultivars of O. sativa were unable to survive prolonged complete submergence for 31–37 d. This indicates that the mechanism of suppressed leaf elongation that confers increased survival of short-term submergence is inadequate for surviving long periods underwater. The O. sativa deepwater cultivar ‘Nylon’ and the ‘Yélé1A’ cultivar of O. glaberrima succeeded in emerging above the floodwater. This resulted in greatly increased shoot length, shoot biomass and leaf area, in association with an increased net assimilation rate compared with the lowland-adapted O. sativa ‘Banjoulou’.

Conclusions

The superior tolerance of deepwater O. sativa and O. glaberrima genotypes to prolonged complete submergence appears to be due to their greater photosynthetic capacity developed by leaves newly emerged above the floodwater. Vigorous upward leaf elongation during prolonged submergence is therefore critical for ensuring shoot emergence from water, leaf area extension above the water surface and a subsequent strong increase in shoot biomass.Key words: Flooding, leaf area, net assimilation rate, Oryza glaberrima, O. sativa, photosynthesis, rice, stress adaptation, submergence escape  相似文献   

15.
Experimental studies on the origin of cultivated rice   总被引:10,自引:0,他引:10       下载免费PDF全文
Oka H 《Genetics》1974,78(1):475-486
1) Contributions to the origin of cultivated rice made by the author and his colleagues were briefly reviewed under several headlines.—2) Two parallel series of evolution of cultivated species, the Asian form of Oryza perennis to O. sativa and O. breviligulata to O. glaberrima, were pointed out compared.—3) In both the two series, a continuous array of intergrades between wild and cultivated species is found in a particular region. The pattern of character variations among those intermediate plants was considered as indicating the evolutionary path, and the monophyletic origin of the Indica and Japonica types of O. sativa was discussed.—4) The conditions of establishment of a weedy form of O. perennis found in India were discussed. It was noticed that cultivation by man in itself works as a selective agent for cultivated types.  相似文献   

16.
In Asian cultivated rice (Oryza sativa), distinct mechanisms to survive flooding are activated in two groups of varieties. Submergence-tolerant rice varieties possessing the SUBMERGENCE1A (SUB1A) gene display reduced growth during flash floods at the seedling stage and resume growth after the flood recedes, whereas deepwater rice varieties possessing the SNORKEL1 (SK1) and SNORKEL2 (SK2) genes display enhanced growth based on internodal elongation during prolonged submergence at the mature stage. In this study, we investigated the occurrence of these growth responses to submergence in the wild rice species Oryza grandiglumis, which is native to the Amazon floodplains. When subjected to gradual submergence, adult plants of O. grandiglumis accessions showed enhanced internodal elongation with rising water level and their growth response closely resembled that of deepwater varieties of O. sativa with high floating capacity. On the other hand, when subjected to complete submergence, seedlings of O. grandiglumis accessions displayed reduced shoot growth and resumed normal growth after desubmergence, similar to the response of submergence-tolerant varieties of O. sativa. Neither SUB1A nor the SK genes were detected in the O. grandiglumis accessions. These results indicate that the O. grandiglumis accessions are capable of adapting successfully to flooding by activating two contrasting mechanisms as the situation demands and that each mechanism of adaptation to flooding is not mediated by SUB1A or the SK genes.  相似文献   

17.

Key message

We have developed allele-specific markers for molecular breeding to transfer the PSTOL1 gene from Kasalath to African mega-varieties, including NERICAs, to improve their tolerance to P-deficient soil.

Abstract

The deficiency of phosphorus (P) in soil is a major problem in Sub-Saharan Africa due to general nutrient depletion and the presence of P-fixing soils. Developing rice cultivars with enhanced P efficiency would, therefore, represent a sustainable strategy to improve the livelihood of resource-poor farmers. Recently the Pup1 locus, a major QTL for tolerance to P deficiency in soil, was successfully narrowed-down to a major gene, the protein kinase OsPSTOL1 (P-starvation tolerance), which was found to be generally absent from modern irrigated rice varieties. Our target is to improve the tolerance of African mega-varieties to P deficiency through marker-assisted introgression of PSTOL1. As a first step, we have determined the Pup1 haplotype and surveyed the presence or absence of PSTOL1 and other genes of the Pup1 locus in African mega-varieties, NERICAs (New Rice for Africa) and their Oryza glaberrima parents. Here, we report the presence of a novel PSTOL1 allele in upland NERICAs that was inherited from the O. glaberrima parent CG14. This allele showed a 35 base-pair substitution when aligned to the Kasalath allele, but maintained a fully conserved kinase domain, and is present in most O. glaberrima accessions evaluated. In-silico and marker analysis indicated that many other genes of the Kasalath Pup1 locus were missing in the O. glaberrima genome, including the dirigent-like gene OsPupK20-2, which was shown to be downstream of PSTOL1. We have developed several allele-specific markers for the use for molecular breeding to transfer the PSTOL1 gene from Kasalath to African mega-varieties, including NERICAs.  相似文献   

18.
A universal core genetic map for rice   总被引:1,自引:0,他引:1  
To facilitate the creation of easily comparable, low-resolution genetic maps with evenly distributed markers in rice (Oryza sativa L.), we conceived of and developed a Universal Core Genetic Map (UCGM). With this aim, we derived a set of 165 anchors, representing clusters of three microsatellite or simple sequence repeat (SSR) markers arranged into non-recombining groups. Each anchor consists of at least three, closely linked SSRs, located within a distance below the genetic resolution provided by common, segregating populations (<500 individuals). We chose anchors that were evenly distributed across the rice chromosomes, with spacing between 2 and 3.5 Mbp (except in the telomeric regions, where spacing was 1.5 Mbp). Anchor selection was performed using in silico tools and data: the O. sativa cv. Nipponbare rice genome sequence, the CHARM tool, information from the Gramene database and the OrygenesDB database. Sixteen AA-genome accessions of the Oryza genus were used to evaluate polymorphisms for the selected markers, including accessions from O. sativa, O. glaberrima, O. barthii, O. rufipogon, O. glumaepatula and O. meridionalis. High levels of polymorphism were found for the tested O. sativa × O. glaberrima or O. sativa × wild rice combinations. We developed Paddy Map, a simple database that is helpful in selecting optimal sets of polymorphic SSRs for any cross that involves the previously mentioned species. Validation of the UCGM was done by using it to develop three interspecific genetic maps and by comparing genetic SSR locations with their physical positions on the rice pseudomolecules. In this study, we demonstrate that the UCGM is a useful tool for the rice genetics and breeding community, especially in strategies based on interspecific hybridisation.  相似文献   

19.
The genus Oryza contains two cultivated species,O. sativa L., the Asiatic rice, andO. glaberrima Steud. which is limited to Africa. Despite much taxonomic work on the relationships of the wild species of the genus, they are still imperfectly known and there has not been unanimous agreement on nomenclature. Most of the species group into complexes the delimitation of which is a matter of opinion. This paper presents results from experimental work, and a theory for the evolution of African cultivated rice is put forward based on taxonomic studies.  相似文献   

20.
Cytological studies of African cultivated rice,Oryza glaberrima   总被引:1,自引:1,他引:0  
African cultivated rice, Oryza glaberrima Steud., was cytologically characterized by using both karyotype analysis and molecular cytology. The somatic chromosomes resemble those of Asian cultivated rice, Oryza sauva L., in general morphology, although some minor differences were noted. Multicolor fluorescence in situ hybridization (McFISH) with chromosomes detected one 45s (17s-5.8s-25s) ribosomal RNA gene locus (45s rDNA) and one 5s ribosomal RNA gene locus (5s rDNA) in the chromosome complement. The 45s rDNA and 5s rDNA loci were physically mapped to the distal end of the short arm of chromosome 9 and to the proximal region of the short arm of chromosome 11 respectively, as in O. sativa. Based on the cytological observations and the physical map of the rDNA loci, the chromosomal organization of O.glaberrima and O. sativa seems to be very similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号