首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enantiomer separation of amino acids in immunoaffinity micro LC-MS   总被引:1,自引:0,他引:1  
Chiral immunoaffinity microbore columns were directly interfaced with MS detection, and the effect of column length and temperature on the enantiomer separation of a number of underivatized aromatic and aliphatic amino acids was investigated utilizing an antibody chiral stationary phase that had been prepared by immobilizing a monoclonal anti-D-amino acid antibody onto silica. The stronger affinity of the antibody towards aromatic and bulky amino acids allowed separation of such analytes in a 0.75 x 150 mm column, while an increase in column length enabled separation of more weakly bound compounds. The strength of interaction between chiral selector and analytes could be modulated conveniently by lowering the temperature. For the first time, simultaneous enantiomer separation of mixtures of amino acids was achieved on antibody-based chiral stationary phases using extracted ion chromatograms.  相似文献   

2.
The importance of silica type for reverse-phase protein separations   总被引:2,自引:0,他引:2  
Various large-pore-diameter silicas have been coated with n-alkylchlorosilanes and tested for efficacy in protein separation. The optimal silica has been characterized for loading and column-length effects by means of resolution, load capacity, and desorption tests. The mechanism of interaction between protein and stationary phase is discussed. Theoretical plate values determined for small, unretained molecules are found to be noncorrelative to protein resolution. A test mixture is proposed for comparing the ability of commercial columns to resolve proteins.  相似文献   

3.
In this paper, a downstream process for purification of 1,3-propanediol from glycerol-based fermentation broth was investigated. The purification of 1,3-propanediol from fermentation broth was achieved by a process combining microfiltration, charcoal treatment, vacuum distillation, and silica gel chromatography. The broth was first filtered through hollow fiber cartridge, wherein 98.7% of biomass was removed. Soluble proteins and other color impurities in the broth were removed by the use of activated charcoal at optimal concentration of 30 g l−1 where the soluble proteins in the broth decreased to 0.1 g l−1 (96.0% protein loss). The obtained broth when concentrated by vacuum distillation resulted in the crystallization of inorganic salts. Subsequently, 1,3-propanediol was purified by gradient chromatography using silica gel as a stationary phase and mixture of chloroform and methanol as a mobile phase. Finally, with the optimal flow rate of 10 ml min−1 and loading amount of 80 ml, the yield of 1,3-propanediol achieved was 89%. The overall yield of 1,3-propanediol using the proposed procedure was 75.47%. The developed method was found to be a simple, rapid, and efficient procedure for the purification of 1,3-propanediol from fermentation broth.  相似文献   

4.
Recently it has been established that low molecular weight displacers can be successfully employed for the purification of proteins in hydrophobic interaction chromatography (HIC) systems. This work investigates the utility of this technique for the purification of an industrial protein mixture. The study involved the separation of a mixture of three protein forms, that differed in the C-terminus, from their aggregate impurities while maintaining the same relative ratio of the three protein forms as in the feed. A batch high-throughput screening (HTS) technique was employed in concert with fluorescence spectroscopy for displacer screening in these HIC systems. This methodology was demonstrated to be an effective tool for identifying lead displacer candidates for a particular protein/stationary-phase system. In addition, these results indicate that surfactants can be employed at concentrations above their CMCs as effective displacers. Displacement of the recombinant proteins with PEG-3400 and the surfactant Big Chap was shown to increase the productivity as compared to the existing step-gradient elution process.  相似文献   

5.
Hydrophobic interaction chromatography is a very popular chromatography method for purification of proteins and plasmids in all scales from analytical to industrial manufacturing. Despite this frequent use, the complex interaction mechanism and the thermodynamic aspects of adsorption in hydrophobic interaction chromatography are still not well understood. Calorimetric methods such as isothermal titration calorimetry and flow calorimetry can help to gain a deeper understanding of the adsorption strength, the influence of salt type and temperature. They can be used to study conformational changes of proteins, which are often associated with the adsorption in hydrophobic interaction chromatography. This review offers a detailed introduction into the thermodynamic fundamentals of adsorption in hydrophobic interaction chromatography with a special focus on the potential applications of isothermal titration calorimetry and flow calorimetry for studying specific problems and relationships of the adsorption behavior of proteins and its various influencing factors. Models for characterizing conformational changes upon adsorption are presented together with methods for assessing this problem for different proteins and stationary phases. All of this knowledge can contribute greatly to forming a sound basis for method development, process optimization and finding modelling strategies in hydrophobic interaction chromatography.  相似文献   

6.
The aim of this study was to develop a procedure that enabled the separation of estradiol diastereoisomers. For this purpose a series of stationary phases with different surface properties has been utilized. Two of them contain various interaction sites, such as: cholesterol, n-acylamide, amine and silanols localised in the organic layer bonded to the surface of silica gel (SG-CHOL and SG-CHOL/AP). The other one contains mainly alkylamide ligands and also residual aminopropyl and silanol groups (SG-AP), as well as the last one consisting of hydrocarbonaceous material (SG-C(18)). In order to select the best type of stationary phase for this analysis, after chromatographic separation of 17-alpha-estradiol and 17-beta-estradiol, selectivity and resolution of the analytes were compared. The best separation of hormones was obtained for SG-CHOL packing, as a consequence of the structure and the properties of this stationary phase. To better understand the retention mechanism and the properties of the stationary phases, used in the separation of steroid compounds, the functional group contributions (tau) were compared with Hansch substituent constants (pi).  相似文献   

7.
The intein-mediated purification system has the potential to significantly reduce the recovery costs of industrial recombinant proteins. The ability of inteins to catalyze a controllable peptide bond cleavage reaction can be used to separate a recombinant protein from its affinity tag during affinity purification. Inteins have been combined with a chitin-binding domain to serve as a self-cleaving affinity tag, facilitating highly selective capture of the fusion protein on an inexpensive substrate--chitin (IMPACT) system, New England Biolabs, Beverly, MA). This purification system has been used successfully at a lab scale in low cell density cultures, but has not been examined comprehensively under high-cell density conditions in defined medium. In this study, the intein-mediated purification of three commercially relevant proteins expressed under high-cell density conditions in E. coli was studied. Additionally, losses during the purification process were quantified. The data indicate that the intein fusion proteins expressed under high cell density fermentations were stable in vivo after induction for a significant duration, and the intein fusion proteins could undergo thiol or pH and temperature initiated cleavage reaction in vitro. Thus, the intein-mediated protein purification system potentially could be employed for the production of recombinant proteins at the industrial-scale.  相似文献   

8.
Hydrophobic interaction chromatography (HIC) is commonly used as a polishing step in monoclonal antibody purification processes. HIC offers an orthogonal selectivity to ion exchange chromatography and can be an effective step for aggregate clearance and host cell protein reduction. HIC, however, suffers from the limitation of use of high concentrations of kosmotropic salts to achieve the desired separation. These salts often pose a disposal concern in manufacturing facilities and at times can cause precipitation of the product. Here, we report an unconventional way of operating HIC in the flowthrough (FT) mode with no kosmotropic salt in the mobile phase. A very hydrophobic resin is selected as the stationary phase and the pH of the mobile phase is modulated to achieve the required selectivity. Under the pH conditions tested (pH 6.0 and below), antibodies typically become positively charged, which has an effect on its polarity and overall surface hydrophobicity. Optimum pH conditions were chosen under which the antibody product of interest flowed through while impurities such as aggregates and host cell proteins bound to the column. This strategy was tested with a panel of antibodies with varying pI and surface hydrophobicity. Performance was comparable to that observed using conventional HIC conditions with high salt.  相似文献   

9.
10.
Silica-based packing materials induce non-specific interactions with proteins in aqueous media because of the nature of their surface, mainly silanol groups. Therefore, the silica surface has to be modified in order to be used as stationary phase for the High Performance Size-Exclusion Chromatography (HPSEC) of proteins. For this purpose, porous silica beads were coated with hydrophilic polymer gels (dextrans of different molecular weights) carrying a calculated amount of diethylaminoethyl groups (DEAE). Actually, as shown by HPSEC, these dextran modified supports minimize non-specific adsorption for proteins and pullulans in aqueous solution. Then, in order to change the pore size in response to temperature, temperature responsive polymer of poly(N-isopropylacrylamide) (PIPAAm) was introduced into the surface of dextran-DEAE on porous silica beads. The structure of these supports before and after modification was alternately studied by Scanning Electronic Microscopy (SEM) and Scanning Force Microscopy (SFM). An adsorption of radiolabelled albumin was performed to complete our study. Silica modifications by dextran-DEAE and PIPAAm improve the neutrality of the support and minimize the non-specific interactions between the solid support and proteins in solution. At low temperature, the support having PIPAAm exhibits a high resolution domain in HPSEC and finally permits a better resolution of proteins and pullulans. At higher temperature, hydrophobic properties of PIPAAm produce interactions with some proteins and trigger off a slight delay of their elution time.  相似文献   

11.
The use of immobilized human serum albumin (HSA) as a stationary phase in affinity chromatography has been shown to be useful in resolving optical antipodes or to investigate interactions between drugs and protein. However, to our knowledge, no inorganic ion binding has been studied on this immobilized protein type. To do this, the human serum albumin stationary phase was assimilated to a weak cation-exchanger by working with a mobile phase pH equal to 6.5. A study of the eluent ionic strength effect on ion retention was carried out by varying the buffer concentrations and the column temperatures. The thermodynamic parameters for magnesium and calcium transfer from the mobile to the stationary phase were determined from linear van’t Hoff plots. An enthalpy–entropy compensation study revealed that the type of interaction was independent of the mobile phase composition. A simple model based on the Gouy–Chapman theory was considered in order to describe the retention behavior of the test cations with the mobile phase ionic strength. From this theoretical approach, the relative charge densities of the human serum albumin surface implied in the binding process were estimated at different column temperatures.  相似文献   

12.
The purification of alpha-galactosidase from soybean seeds is a five to six-step procedure consisting of cryoprecipitation, acid precipitation and ammonium sulfate fractionation followed by two or three chromatography steps. The procedures, while not optimized, were carried out in a manner that resulted in 414-515-fold purification, as reported previously. The costs of two purification sequences were compared. In the best case, the preparative-scale costs of stationary phase, reagents, and hardware were $790 per million enzyme units, excluding labor. Stationary phase costs predominated over extraction, chromatography reagent, and eluent costs when the stationary phase is replaced after 10-40 cycles of use. However, if stationary phase life exceeds 50-200 cycles, stationary phase costs become similar in magnitude to eluent and reagent costs. Labor costs, which are process-specific and difficult to estimate, exceed all other costs by a factor of 10-50 at a small scale of operation and constitute a major cost, regardless of scale. This case study provides equations and a frame-work for carrying out a first comparison of costs for multistep purification sequences. Column life, throughput, and scale of operation were found to determine not only the magnitude, but also the relative contributions, of the different components that make up purification costs. This analysis shows that there are major opportunities for reducing purification costs through the development of less expensive stationary phases and the implementation of intelligent process control and automation for process scale chromatography.  相似文献   

13.
Mixed-mode chromatography combines features of ion-exchange chromatography and hydrophobic interaction chromatography and is increasingly used in antibody purification. As a replacement for flow-through operations on traditional unmixed resins or as a pH-controlled bind-and-elute step, the use of both interaction modes promises a better removal of product-specific impurities. However, the combination of the functionalities makes industrial process development significantly more complex, in particular the identification of the often small elution window that delivers the desired selectivity. Mechanistic modeling has proven that even difficult separation problems can be solved in a computer-optimized manner once the process dynamics have been modeled. The adsorption models described in the literature are also very complex, which makes model calibration difficult. In this work, we approach this problem with a newly constructed model that describes the adsorber saturation with the help of the surface coverage function of the colloidal particle adsorption model for ion-exchange chromatography. In a case study, a model for a pH-controlled antibody polishing step was created from six experiments. The behavior of fragments, aggregates, and host cell proteins was described with the help of offline analysis. After in silico optimization, a validation experiment confirmed an improved process performance in comparison to the historical process set point. In addition to these good results, the work also shows that the high dynamics of mixed-mode chromatography can produce unexpected results if process parameters deviate too far from tried and tested conditions.  相似文献   

14.
The novel "multicolumn countercurrent solvent gradient purification" (MCSGP) process has been modeled for the purification of a polypeptide mixture characterized by a strong non-linear competitive adsorption isotherm. As a model system, the purification of an industrial polypeptide mixture containing 46% of the hormone calcitonin has been selected. The many impurities contained in the mixture have been lumped into three key impurities, which are selected as the ones eluting closer to the main component. The simulation model allows for a better understanding of the complex operating behavior of the multicolumn system, which has been experimentally investigated in a previous work. Through a systematic parametric analyses of the model behavior, the main operating parameters controlling the process performance in terms of purity and yield are investigated. The study of internal liquid and adsorbed phase concentration profiles along the unit for the different operating conditions allow elucidating the working principle of the new separation process. It is found that the MCSGP unit achieves much higher yields for a given product purity than the corresponding single-column batch units.  相似文献   

15.
The potential of reverse-phase high-performance liquid chromatography for the separation of closely related proteins has been investigated. Using an octadecasilyl silica stationary phase and a propanol/pyridine formate solvent system normal α- and β-chains of human hemoglobin have been separated from several of their respective mutant chains which differ by single amino acid residues only. The results suggest that reverse-phase high-performance liquid chromatography is a powerful tool for the separation of medium-sized proteins with minimal structural difference.  相似文献   

16.
M J Boland 《Bioseparation》1990,1(3-4):293-304
Animal tissue is likely to continue to be an important source of enzymes and protein hormones well into the 21st century. Aqueous phase systems show considerable potential and specific advantages for extractive purification of proteins from animal tissue. Although no industrial process is yet in place for commercial production of a protein from animal tissue, the potential for the system has, however, been demonstrated at laboratory scale for a number of enzymes, and at pilot scale for a few, using simple phase systems and also affinity partitioning systems. Pertinent features of these systems are reviewed, and process and economic aspects discussed.  相似文献   

17.
The behavior of cell surface components labeled with fluorochromes can be studied by fluorescence microscopy and spectroscopy; further structural analyses would be facilitated by purification of the labeled components. We have developed a protocol for identifying the targets for labeling with fluorescein derivatives, by using 125I- diiodofluorescein isothiocyanate ( 125IFC ) and for isolating the labeled components with anti-IFC immunoadsorbents. Anti-IFC antibodies obtained from rabbits immunized with IFC-hemocyanin were purified by affinity chromatography and coupled to CNBr-activated Sepharose 4B. The anti-IFC immunoadsorbents could then be used to isolate the entire set of 125IFC -proteins from crude detergent extracts of labeled sea urchin sperm, with a 70% yield and a purification of more than 250 fold. Nonspecific binding of unlabeled proteins to the immunoadsorbent was insignificant. When the immunoadsorbent IFC-protein complex was used directly as an immunogen, antibodies were obtained that reacted with the underivatized proteins that were targets for IFC labeling, as indicated by immunoblotting after gel electrophoresis. The antibodies also reacted with the surface of unlabeled sperm as shown by immunofluorescence. Thus, by treating the IFC-sperm proteins as a class, we obtained antibodies that recognized the unlabeled proteins in situ or in cell extracts. This approach should be generally useful in obtaining reagents directed against specific cell surface components.  相似文献   

18.
Glucose oxidase (GO) is an important industrial enzyme typically purified from Penicillium and Aspergillus sp. As GO distribution within the cultures influences process design for maximal product recovery, distribution of GO activity in Penicillium sp. CBS 120262 and Aspergillus niger NRRL-3, during mid-exponential and stationary phases, is compared. On progression from mid-exponential to stationary phase, the percentage GO activity in the cytoplasm decreased 1.6- and 1.3-fold in Penicillium sp. and A. niger respectively. In Penicillium sp., a concomitant 1.8- and 1.9-fold decrease in the percentage GO activity in the cell envelope and slime mucilage respectively, translated into a 2.0-fold increase in the extracellular fluid. In A. niger, decreasing cytoplasmic GO activity was accompanied by 1.3-fold increases in the cell envelope and slime mucilage, with a 1.3-fold decrease in the extracellular fluid. Similar trends were observed in specific GO activities. As final GO activity recovered is governed by the purification program, recovery from the extracellular fluid plus cell extract or from the extracellular fluid only were compared through simulating processes of varying complexity. A critical yield for each purification stage was identified above which recovery from the extracellular fluid plus cell extract exceeded that from extracellular fluid alone. These results highlight the influence of microorganism, harvest time and efficiency of downstream process on GO activity delivered. In the systems studied, Penicillium sp. is the organism of choice and should be harvested during stationary phase. The purification process chosen should be informed by both enzyme distribution and individual purification stages yields.  相似文献   

19.
A clear understanding of the specific secondary structure and binding domain resulting from the interactions of proteins and peptides with lipid surfaces will provide insight into the specific functions of biologically active molecules. We have shown in earlier studies that the stationary phases used in reverse-phase high-performance liquid chromatography represent a model artificial lipid surface for the study of induced conformational states of peptides on lipid interaction. We have now used reverse-phase high-performance liquid chromatography to determine the binding domains of peptides and, by extension, of proteins to a lipid surface. This approach consists of performing chemical modifications of specific amino acid side-chain functionalities after the interaction of the peptides with the reverse-phase high-performance liquid chromatography C18 groups. The susceptibility to oxidation was also studied after binding of the same peptides to liposomes. Oxidation of a single methionine residue "walked" through an amphipathic alpha-helical 18-mer peptide was selected to illustrate this approach. The extent of oxidation was found to be clearly dictated by the accessibility of the methionine residue to the aqueous mobile phase. The binding domain found for the peptide in its lipid-induced conformational state was unequivocally the entire hydrophobic face of the amphipathic alpha-helix.  相似文献   

20.
采用大孔吸附树脂层析结合硅胶柱层析,对环孢菌素A的分离纯化进行研究,确定了最佳层析条件,建立了工业化制备环孢菌素A的工艺。大孔吸附树脂层析选用D101树脂作为吸附介质,提取液丙酮含量控制在50%,最大吸附量为35 mg/g湿树脂,洗脱剂选用丙酮;硅胶柱层析选用42~64μm硅胶作为层析介质,最优层析条件为柱床高径比10∶1,流动相配比V(石油醚)∶V(丙酮)=70∶30,流速80 mL/m in,环孢菌素A上样质量浓度100 g/L,硅胶层析平均收率为84.2%,环孢菌素A纯度可达到97%以上,整个工艺总收率为65%~70%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号