首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of mRNA translation and stability plays an important role in the control of gene expression during embryonic development. We have recently shown that the tissue-specific expression of the RAR beta 2 gene in mouse embryos is regulated at the translational level by short upstream open reading frames (uORFs) In the 5'-untranslated region (Zimmer, A., A.M. Zimmer, and K. Reynolds. 1994. J. Cell Biol. 127:1111- 1119). To gain insight into the molecular mechanism, we have performed a systematic mutational analysis of the uORFs. Two series of constructs were tested: in one series, each uORF was individually inactivated by introducing a point mutation in its start codon; in the second series, all but one ORF were inactivated. Our results indicate that individual uORFs may have different functions. uORF4 seems to inhibit translation of the major ORF in heart and brain, while uORFs 2 and 5 appear to be important for efficient translation in all tissues. To determine whether the polypeptide encoded by uORF4 or the act of translating it, is the significant event, we introduced point mutations to create silent mutations or amino acid substitutions in uORF4. Our results indicate that the uORF4 amino acid coding sequence is important for the inhibitory effect on translation of the downstream major ORF.  相似文献   

2.
3.
4.
5.
6.
Kochetov  A. V.  Sirnik  O. A.  Rogosin  I. B.  Glazko  G. V.  Komarova  M. L.  Shumny  V. K. 《Molecular Biology》2002,36(4):510-516
Computer analysis of nucleotide sequences of 5"-untranslated regions (5"-UTR) of higher plant mRNA adopted from the EMBL nucleotide sequence database was carried out. It was demonstrated that the average nucleotide frequencies of the leader sequences and adjacent regions of basal promoters are similar, whereas introns and 3"-UTR have a higher content of T and a lower content of C. A particular 5"-UTR contextual feature is a misbalance in the content of complementary nucleotides, probably caused by negative influence of the stable secondary structure on the translation properties of the leader sequence. Approximately 20% of 5"-UTR possess AUG triplets, i.e., twice as much as it has been estimated earlier. The properties of the open reading frames of the leader sequence (uORF) and presumable causes of their high content in 5"-UTR of eukaryotic mRNAs are discussed. The nature of correlation between some features of uORFs and protein-coding gene sequences is analyzed. It is demonstrated that in effectively translated mRNAs the leader AUG triplets are more frequently located in a nonoptimal context, whereas the terminating codons of uORFs more frequently exist in the optimal one. A hypothesis is put forward that the efficiency of termination at the uORF stop codon might substantially interfere with the mRNA translation activity.  相似文献   

7.
8.
Translational control is a key step in eukaryotic gene expression. The majority of translational control occurs at the level of initiation, thus implicating the 5' untranslated region as a major site of translational regulation. Many growth-related mRNAs have atypical 5' UTRs, which are often long and GC-rich. Such features promote formation of stable secondary structure, and many mRNAs encoding proteins involved in cell growth, proliferation and apoptosis have structured 5' UTRs, which in many cases harbour internal ribosome entry sites (IRESs) and upstream open-reading frames (uORFs). In this review we discuss how secondary structural elements in the 5' UTR can regulate translation and how mutations that perturb these secondary structural elements can have implications for disease and tumourigenesis.  相似文献   

9.
10.
Tristetraprolin (TTP) regulates the expression of AU-rich element-containing mRNAs through promoting the degradation and repressing the translation of target mRNA. While the mechanism for promoting target mRNA degradation has been extensively studied, the mechanism underlying translational repression is not well established. Here, we show that TTP recruits eukaryotic initiation factor 4E2 (eIF4E2) to repress target mRNA translation. TTP interacted with eIF4E2 but not with eIF4E. Overexpression of eIF4E2 enhanced TTP-mediated translational repression, and downregulation of endogenous eIF4E2 or overexpression of a truncation mutant of eIF4E2 impaired TTP-mediated translational repression. Overexpression of an eIF4E2 mutant that lost the cap-binding activity also impaired TTP''s activity, suggesting that the cap-binding activity of eIF4E2 is important in TTP-mediated translational repression. We further show that TTP promoted eIF4E2 binding to target mRNA. These results imply that TTP recruits eIF4E2 to compete with eIF4E to repress the translation of target mRNA. This notion is supported by the finding that downregulation of endogenous eIF4E2 increased the production of tumor necrosis factor alpha (TNF-α) protein without affecting the mRNA levels in THP-1 cells. Collectively, these results uncover a novel mechanism by which TTP represses target mRNA translation.  相似文献   

11.
The mechanism of translational initiation differs between prokaryotes and eukaryotes. Prokaryotic mRNAs generally contain within their 5′-untranslated region (5′-UTR) a Shine-Dalgarno (SD) sequence that serves as a ribosome-binding site. Chloroplasts possess prokaryotic-like translation machinery, and many chloroplast mRNAs have an SD-like sequence, but its position is variable. Tobacco chloroplast atpB mRNAs contain no SD-like sequence and are U-rich in the 5′-UTR (−20 to −1 with respect to the start codon). In vitro translation assays with mutated mRNAs revealed that an unstructured sequence encompassing the start codon, the AUG codon and its context are required for translation. UV crosslinking experiments showed that a 50 kDa protein (p50) binds to the 5′-UTR. Insertion of an additional initiation region (SD-sequence and AUG) in the 5′-UTR, but not downstream, arrested translation from the authentic site; however, no inhibition was observed by inserting only an AUG triplet. We hypothesize for translational initiation of the atpB mRNA that the ribosome enters an upstream region, slides to the start codon and forms an initiation complex with p50 and other components.  相似文献   

12.
13.
The Kaposi''s sarcoma-associated herpesvirus (KSHV) ORF36 protein kinase is translated as a downstream gene from the ORF35-37 polycistronic mRNA via a unique mechanism involving short upstream open reading frames (uORFs) located in the 5′ untranslated region. Here, we confirm that ORF35-37 is functionally dicistronic during infection and demonstrate that mutation of the dominant uORF restricts KSHV replication. Leaky scanning past the uORFs facilitates ORF35 expression, while a reinitiation mechanism after translation of the uORFs enables ORF36 expression.  相似文献   

14.
15.
16.
Several recent publications have explored cap-independent translation through an internal ribosome entry site (IRES) in the 5′-UTR of the mRNA encoding the cyclin-dependent kinase inhibitor p27. The major experimental tool used in these reports was the use of bicistronic reporter constructs in which the 5′-UTR was inserted between the upstream and downstream cistrons. None of these reports has completely ruled out the possibility that the 5′-UTR has either cryptic promoter activity or a cryptic splice acceptor site. Either of these possibilities could result in expression of a monocistronic mRNA encoding the downstream cistron and false identification of an IRES. Indeed, Liu et al. recently published data suggesting that the p27 5′-UTR harbors cryptic promoter activity which accounts for its putative IRES activity. In this report, we have explored this potential problem further using promoterless bicistronic constructs coupled with RNase protection assays, siRNA knockdown of individual cistrons, RT-PCR to detect mRNA encoded by the bicistronic reporter with high sensitivity, direct transfection of bicistronic mRNAs, and insertion of an iron response element into the bicistronic reporter. The results do not support the conclusion that the p27 5′-UTR has significant functional promoter activity or cryptic splice sites, but rather that it is able to support cap-independent initiation of translation.  相似文献   

17.
18.
19.
Ribonucleotide reductase catalyzes a rate-limiting reaction in DNA synthesis by converting ribonucleotides to deoxyribonucleotides. It consists of two subunits and the small one, M2 (or R2), plays an essential role in regulating the enzyme activity and its expression is finely controlled. Changes in the M2 level influence the dNTP pool and, thus, DNA synthesis and cell proliferation. M2 gene has two promoters which produce two major mRNAs with 5′-untranslated regions (5′-UTRs) of different lengths. In this study, we found that the M2 mRNAs with the short (63 nt) 5′-UTR can be translated with high efficiency whereas the mRNAs with the long (222 nt) one cannot. Examination of the long 5′-UTR revealed four upstream AUGs, which are in the same reading frame as the unique physiological translation initiation codon. Further analysis demonstrated that these upstream AUGs act as negative cis elements for initiation at the downstream translation initiation codon and their inhibitory effect on M2 translation is eIF4G dependent. Based on the findings of this study, we conclude that the expression of M2 is likely regulated by fine tuning the translation from the mRNA with a long 5′-UTR during viral infection and during the DNA replication phase of cell proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号