首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Compounds known to be inhibitors of mixed-function oxidase systems inhibited the aerobic synthesis of hydroxylated carotenoids in Staphylococcus aureus U-71. Growth of the cells in the presence of 2-diethylaminoethyl-2,2-diphenyl valerate, 2,4-dichloro-6-phenylphenoxyethylamine, 2,4-dichloro-6-phenylphenoxyethyldiethylamine, and piperonyl butoxide reduced the levels of the rubixanthins found in stationary-phase cells by 75 to 97%. In cells grown with mevalonate-2-(14)C, the turnover rate of phytoene was reduced and the turnover rate of phytofluenol was increased in the presence of these inhibitors. The zeta- and delta-carotenes, which turn over in the absence of the inhibitors, accumulated (14)C in the presence of the inhibitors. This suggested that a mixed-function oxidase was responsible for the aerobic hydroxylation of delta-carotene in S. aureus U-71.  相似文献   

2.
Diphenylamine at concentrations which did not effect the growth rate inhibited the synthesis of vitamin K(2) in both anaerobic and aerobic cultures by about 50%. At this concentration, diphenylamine inhibited the synthesis of the cyclic carotenoids delta-carotene and the rubixanthins 25 to 35% anaerobically and 60 to 90% aerobically. The inhibition of synthesis of cyclic carotenoids and vitamin K(2) by diphenylamine had no detectable effect on the formation of the membrane-bound electron transport system.  相似文献   

3.
The SasG surface protein of Staphylococcus aureus has been shown to promote the formation of biofilm. SasG comprises an N-terminal A domain and repeated B domains. Here we demonstrate that SasG is involved in the accumulation phase of biofilm, a process that requires a physiological concentration of Zn2+. The B domains, but not the A domain, are required. Purified recombinant B domain protein can form dimers in vitro in a Zn2+-dependent fashion. Furthermore, the protein can bind to cells that have B domains anchored to their surface and block biofilm formation. The full-length SasG protein exposed on the cell surface is processed within the B domains to a limited degree, resulting in cleaved proteins of various lengths being released into the supernatant. Some of the released molecules associate with the surface-exposed B domains that remain attached to the cell. Studies using inhibitors and mutants failed to identify any protease that could cause the observed cleavage within the B domains. Extensively purified recombinant B domain protein is very labile, and we propose that cleavage occurs spontaneously at labile peptide bonds and that this is necessary for biofilm formation.Staphylococcus aureus is a commensal bacterium that is carried persistently in the anterior nares of about 20% of the human population. The organism can cause superficial skin infections, such as abscesses and impetigo, and more dangerous and potentially life-threatening invasive infections, such as endocarditis, osteomyelitis, and septic arthritis (26). Staphylococcus epidermidis and S. aureus are the major causes of infections associated with indwelling medical devices, such as central venous catheters, cardiovascular devices, and artificial joints (34, 54). The ability to form a biofilm is crucial to the microbes'' success in device-related infections. Bacteria in the biofilm matrix are in a semidormant state, are difficult to inhibit with antibiotics, and are impervious to host neutrophils and macrophages (36, 43, 44, 51). Until recently biofilm formation by staphylococci was attributed to the ability to synthesize an extracellular polysaccharide called polysaccharide intercellular adhesin (PIA), which is composed of partially deacetylated poly-N-acetylglucosamine (15, 28, 50). Attachment of bacteria to biomedical devices is mediated by adhesion to the naked plastic or metal surface by a surface component such as the major autolysin Atl (2, 14). Alternatively, adhesion to surfaces that have been conditioned by fibronectin and fibrinogen from host plasma is mediated by surface proteins such as clumping factor A (ClfA) and fibronectin binding proteins (FnBPA/B) of S. aureus or SdrG/Fbe of S. epidermidis (17, 46, 47).Several surface proteins of staphylococci can also promote the accumulation phase of biofilm: (i) the biofilm-associated protein Bap, which is only expressed by bovine strains of S. aureus (8); (ii) the SasC surface protein of S. aureus (41); (iii) fibronectin binding proteins FnBPA and FnBPB, which are particularly associated with biofilm formation by some types of methicillin-resistant S. aureus (MRSA) (35, 48); (iv) the multifactorial virulence factor protein A, which promotes cell accumulation when expressed at high levels, for example,in mutants defective in the accessory gene regulator Agr (31); (v) the extracellular matrix binding protein (Embp) of S. epidermidis (4); (vi) the accumulation-associated protein (Aap) of S. epidermidis and the related protein SasG from S. aureus (7, 19, 40).Aap and SasG are typical LPXTG-anchored multidomain cell wall-associated proteins (see Fig. Fig.1A,1A, below). A signal sequence is removed from the N terminus during secretion across the cytoplasmic membrane. The C-terminal domains comprise a sorting signal (LPXTG) and hydrophobic membrane-spanning domain and positively charged residues that are required for covalent attachment of the proteins to cell wall peptidoglycan by sortase A. The N termini of the mature proteins (A domains) comprise related amino acid sequences that have been implicated in adhesion of bacteria to desquamated epithelial cells and could be involved in colonization of the nares and skin (7, 27, 39). The archetypal Aap protein of S. epidermidis RP62a has 12 repeats of almost identical sequences of 128 residues followed by a partial repeat of 68 residues (region B), while SasG from S. aureus strain 8325-4 and strain Newman has seven 128-residue repeats and one partial repeat. The B subunits of Aap and SasG are 64% identical.Open in a separate windowFIG. 1.(A) Schematic representation of SasG domain organization. The positions of the signal sequence (S), A domain, B region (B1 to -8), and the wall/membrane-spanning regions (W/M) are indicated. The LPKTG motif is recognized by the sortase A enzyme, which covalently anchors the protein to the cell wall peptidoglycan. (B) Whole-cell immunoblot validating expression of A domain and B regions of SasG variants. Serial dilutions of SH1000(pALC2073:sasG+) (row 1); SH1000(pALC2073sasG+ A+B) (row 2); SH1000(pALC2073sasG+ AB+) (row 3), and SH1000(pALC2073sasG+ AB+) induced with tetracycline (90 ng/ml) (row 4) were applied to a nitrocellulose membrane and probed with anti-SasG A domain and anti-SasG B domain antibodies. (C) Biofilm formation by SH1000 constructs expressing SasG variants. Biofilm was allowed to form for 24 h at 37°C under static conditions in microtiter dishes. Biofilm was stained with crystal violet, and the absorbance was measured at 570 nm.The formation of biofilm by Aap in S. epidermidis is promoted by the removal of the A domain by cleavage by an as-yet-unidentified bacterial protease, an event that can also be precipitated by host proteases (40). The ability of the exposed Aap B domains of different bacterial cells to form homophilic interactions through a Zn2+-dependent zipper mechanism was proposed when it was shown that purified B domains formed dimers in vitro that were dependent on the presence of Zn2+ (6). Purified recombinant B domain protein, but not the A domain, inhibited biofilm formation, as did antibodies that specifically bound to the B domains (40). The Zn2+ chelator diethylenetriaminepentaacetic acid (DTPA) inhibited biofilm formation both by S. epidermidis RP62a (presumed to be due to Aap) and by community-associated MRSA (presumed to be due to SasG) (6).This study set out to investigate the molecular basis of biofilm accumulation promoted by the SasG protein of S. aureus. We demonstrate that processing of SasG occurs during growth and biofilm formation in a manner that is different from that reported for Aap, and we have investigated the mechanism.  相似文献   

4.
Small-cell formation of Staphylococcus aureus by subinhibitory concentration of nitrofuran derivatives was examined by scanning and transparent electron microscopy.  相似文献   

5.
金黄色葡萄球菌生物膜形成机制研究进展   总被引:3,自引:0,他引:3  
金黄色葡萄球菌是医院和社区获得性感染最常见的病原菌之一,而且可形成生物膜,从而导致生物膜相关疾病的产生。患者一旦发生金黄色葡萄球菌生物膜感染,难以彻底治愈。深入研究金黄色葡萄球菌生物膜形成的分子机制和调控网络,对寻找有效的防治、治疗药物和手段具有重要意义。我们就金黄色葡萄球菌生物膜形成过程和调控机制的研究近况做一综述。  相似文献   

6.
7.
S ummary . The growth of Staphylococcus aureus 111 was inhibited by aliphatic alcohols. The extent of inhibition by primary n -alcohols increased with the elongation of the chain. Secondary alcohols were less inhibitory than the corresponding primary alcohols. The inhibitory effect was influenced by the distance of the hydroxyl group from the end of the carbon chain. When the alcohols were added to the medium in sub-inhibitory amount, enzyme synthesis by the bacteria was decreased, but there was no demonstrable inhibition of enzyme already formed.  相似文献   

8.
Formation of regular packets of Staphylococcus aureus cells.   总被引:8,自引:4,他引:4       下载免费PDF全文
Staphylococcus aureus, which usually forms grape-like clusters, has the ability to form regularly arranged cell packets. These regular cell packets are formed when the activity of its separation enzyme(s) is lost either by treatment with detergents, such as sodium dodecyl sulfate or Trition X-100, or by mutation of the cells. These cell packets consisted of 8 to 64 spherical cells that have a three-dimensional arrangement. Some irregularity in the arragement of cells in packets, however, can be observed by scanning electron microscopy. It is concluded that S. aureus fundametally divides along three definitely oriented planes that are located at right angles to each other. After cell division, the cells usually become translocated due to the action of a separation enzyme(s) to form grape-like clusters.  相似文献   

9.
The SaeRS two-component regulatory system of Staphylococcus aureus is known to affect the expression of many genes. The SaeS protein is the histidine kinase responsible for phosphorylation of the response regulator SaeR. In S. aureus Newman, the sae system is constitutively expressed due to a point mutation in saeS, relative to other S. aureus strains, which results in substitution of proline for leucine at amino acid 18. Strain Newman is unable to form a robust biofilm and we report here that the biofilm-deficient phenotype is due to the saeSP allele. Replacement of the Newman saeSP with saeSL, or deletion of saeRS, resulted in a biofilm-proficient phenotype. Newman culture supernatants were observed to inhibit biofilm formation by other S. aureus strains, but did not affect biofilm formation by S. epidermidis. Culture supernatants of Newman saeSL or Newman ΔsaeRS had no significant effect on biofilm formation. The inhibitory factor was inactivated by incubation with proteinase K, but survived heating, indicating that the inhibitory protein is heat-stable. The inhibitory protein was found to affect the attachment step in biofilm formation, but had no effect on preformed biofilms. Replacement of saeSL with saeSP in the biofilm-proficient S. aureus USA300 FPR3757 resulted in the loss of biofilm formation. Culture supernatants of USA300 FPR3757 saeSP, did not inhibit biofilm formation by other staphylococci, suggesting that the inhibitory factor is produced but not secreted in the mutant strain. A number of biochemical methods were utilized to isolate the inhibitory protein. Although a number of candidate proteins were identified, none were found to be the actual inhibitor. In an effort to reduce the number of potential inhibitory genes, RNA-Seq analyses were done with wild-type strain Newman and the saeSL and ΔsaeRS mutants. RNA-Seq results indicated that sae regulates many genes that may affect biofilm formation by Newman.  相似文献   

10.
Aminoacetone formation by Staphylococcus aureus   总被引:4,自引:3,他引:1       下载免费PDF全文
  相似文献   

11.
12.
Bacteria can either exist in the planktonic (free floating) state or in the biofilm (encased within an organic framework) state. Bacteria biofilms cause industrial concerns and medical complications and there has been a great deal of interest in the discovery of small molecule agents that can inhibit the formation of biofilms or disperse existing structures. Herein we show that, contrary to previously published reports, d-amino acids do not inhibit biofilm formation of Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), and Staphylococcus epidermis (S. epidermis) at millimolar concentrations. We evaluated a diverse set of natural and unnatural d-amino acids and observed no activity from these compounds in inhibiting biofilm formation.  相似文献   

13.
Staphylococcus aureus is a potent biofilm former on host tissue and medical implants, and biofilm growth is a critical virulence determinant for chronic infections. Recent studies suggest that many clinical isolates form polysaccharide-independent biofilms. However, a systematic screen for defective mutants has not been performed to identify factors important for biofilm formation in these strains. We created a library of 14,880 mariner transposon mutants in a S. aureus strain that generates a proteinaceous and extracellular DNA based biofilm matrix. The library was screened for biofilm defects and 31 transposon mutants conferred a reproducible phenotype. In the pool, 16 mutants overproduced extracellular proteases and the protease inhibitor α2-macroglobulin restored biofilm capacity to 13 of these mutants. The other 15 mutants in the pool displayed normal protease levels and had defects in genes involved in autolysis, osmoregulation, or uncharacterized membrane proteins. Two transposon mutants of interest in the GraRS two-component system and a putative inositol monophosphatase were confirmed in a flow cell biofilm model, genetically complemented, and further verified in a community-associated methicillin-resistant S. aureus (CA-MRSA) isolate. Collectively, our screen for biofilm defective mutants identified novel loci involved in S. aureus biofilm formation and underscored the importance of extracellular protease activity and autolysis in biofilm development.  相似文献   

14.
15.
Many methicillin-resistant (Mecr) strains of Staphylococcus aureus either produce no protein A or secrete it extracellularly (S. Winblad and C. Ericson, Acta Pathol. Microbiol. Scand. Sect. B 81:150–156, 1973). We found that methicillin resistance and protein A production were apparently lost coordinately from the natively Mecr strain A676. Restoration of the genetic determinant for methicillin resistance (mec) by transduction or transformation restored protein A production. In two other Mecr strains, loss of mec was accompanied by marked reduction in protein A formation. Genetic transfer of mec to derivatives of S. aureus 8325 affected protein A formation differently with different mec determinants. Those derived from strain A676 and two other Mecr strains reduced the scanty amount of protein A produced by strain 8325 to even lower or undetectable levels, whereas mec from two more Mecr strains increased its protein A content. This “mec-effect,” i.e., stimulation or inhibition of protein A formation dependent on the combination of host strain and mec determinant, was reduced in methicillin-susceptible (Mecs) mutants produced by ethyl methane sulfonate treatment of Mecr strains. The mec-effect reappeared in spontaneous revertants to methicillin resistance. Phenotypic reduction of methicillin resistance in Mecr strains grown at 44°C was accompanied by reduction of the mec-effect on protein A, but it had no effect on protein A formation in Mecs strains. Two independent mutants of strain 8325 produced large amounts of protein A at rates that were unaffected by growth at 44°C or by the introduction of mec determinants.  相似文献   

16.
17.
Staphylococcus aureus is a Gram-positive bacterial pathogen and a leading cause of hospital acquired infections. Because the free iron concentration in the human body is too low to support growth, S. aureus must acquire iron from host sources. Heme iron is the most prevalent iron reservoir in the human body and a predominant source of iron for S. aureus. The iron-regulated surface determinant (Isd) system removes heme from host heme proteins and transfers it to IsdE, the cognate substrate-binding lipoprotein of an ATP-binding cassette transporter, for import and subsequent degradation. Herein, we report the crystal structure of the soluble portion of the IsdE lipoprotein in complex with heme. The structure reveals a bi-lobed topology formed by an N- and C-terminal domain bridged by a single alpha-helix. The structure places IsdE as a member of the helical backbone metal receptor superfamily. A six-coordinate heme molecule is bound in the groove established at the domain interface, and the heme iron is coordinated in a novel fashion for heme transporters by Met(78) and His(229). Both heme propionate groups are secured by H-bonds to IsdE main chain and side chain groups. Of these residues, His(229) is essential for IsdE-mediated heme uptake by S. aureus when growth on heme as a sole iron source is measured. Multiple sequence alignments of homologues from several other Gram-positive bacteria, including the human pathogens pyogenes, Bacillus anthracis, and Listeria monocytogenes, suggest that these other systems function equivalently to S. aureus IsdE with respect to heme binding and transport.  相似文献   

18.
Addition of sublethal doses of d-cycloserine to growing cells of Staphylococcus aureus induces the rupture of the cell wall along an equatorial ring, thus allowing the liberation of protoplasts.  相似文献   

19.
The facultative pathogen Staphylococcus aureus colonizes the human anterior nares and causes infections of various organ systems. Which carbon, energy, and phosphate sources can be utilized by S. aureus in nutrient‐poor habitats has remained largely unknown. We describe that S. aureus secretes a glycerophosphodiesterase (glycerophosphodiester phosphodiesterase, EC 3.1.4.46), GlpQ, degrading the glycerophosphodiester (GPD) head groups of phospholipids such as human phosphatidylcholine (GroPC). Deletion of glpQ completely abolished the GroPC‐degrading activity in S. aureus culture supernatants. GroPC has been detected in human tissues and body fluids probably as a result of phospholipid remodelling and degradation. Notably, GroPC promoted S. aureus growth under carbon‐ and phosphate‐limiting conditions in a GlpQ‐dependent manner indicating that GlpQ permits S. aureus to utilize GPD‐derived glycerol‐3‐phosphate as a carbon and phosphate sources. Thus, S. aureus can use a broader spectrum of nutrients than previously thought which underscores its capacity to adapt to the highly variable and nutrient‐poor surroundings.  相似文献   

20.
Staphylococcus aureus is a major human pathogen and one of the more prominent pathogens causing biofilm related infections in clinic. Antibiotic resistance in S. aureus such as methicillin resistance is approaching an epidemic level. Antibiotic resistance is widespread among major human pathogens and poses a serious problem for public health. Conventional antibiotics are either bacteriostatic or bacteriocidal, leading to strong selection for antibiotic resistant pathogens. An alternative approach of inhibiting pathogen virulence without inhibiting bacterial growth may minimize the selection pressure for resistance. In previous studies, we identified a chemical series of low molecular weight compounds capable of inhibiting group A streptococcus virulence following this alternative anti-microbial approach. In the current study, we demonstrated that two analogs of this class of novel anti-virulence compounds also inhibited virulence gene expression of S. aureus and exhibited an inhibitory effect on S. aureus biofilm formation. This class of anti-virulence compounds could be a starting point for development of novel anti-microbial agents against S. aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号