共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonhomologous DNA end joining of synthetic hairpin substrates in Xenopus laevis egg extracts. 总被引:1,自引:0,他引:1
下载免费PDF全文

N Beyert S Reichenberger M Peters M Hartung B Gttlich W Goedecke W Vielmetter P Pfeiffer 《Nucleic acids research》1994,22(9):1643-1650
Processes of DNA end joining are assumed to play a major role in the elimination of DNA double-strand breaks (DSB) in higher eucaryotic cells. Linear plasmid molecules terminated by nonhomologous restriction ends are the typical substrates used in the analysis of joining mechanisms. However, due to their limited structural variability, DSB ends generated by restriction cleavage cover probably only part of the total spectrum of naturally occurring DSB termini. We therefore devised novel DNA substrates consisting of synthetic hairpin-shaped oligonucleotides which permit the construction of blunt ends and 5'- or 3'-protruding single-strands (PSS) of arbitrary sequence and length. These substrates were tested in extracts of Xenopus laevis eggs known to efficiently join linear plasmids bearing nonhomologous restriction termini (Pfeiffer and Vielmetter, 1988). Sequences of hairpin junctions indicate that the short hairpins are joined by the same mechanisms as the plasmid substrates. However, the bimolecular DNA end joining reaction was only detectable when both hairpin partners had a minimal duplex stem length of 27bp and their PSS-tails did not exceed 10nt. 相似文献
2.
Mammalian somatic cells are known to repair DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) and homologous recombination (HR); however, how male germ cells repair DSBs is not yet characterized. We have previously reported the highly efficient and mostly precise DSB joining ability of mouse testicular germ cell extracts for cohesive and blunt ends, with only a minor fraction undergoing terminal deletion [Mutat. Res. 433 (1999) 1]; however, the precise mechanism of joining was not established. In the present study, we therefore tested the ability of testicular extracts to join noncomplementary ends; we have also sequenced the junctions of both complementary and noncomplementary termini and established the joining mechanisms. While a major proportion of complementary and blunt ends were joined by simple ligation, the small fraction having noncleavable junctions predominantly utilized short stretches of direct repeat homology with limited end processing. For noncomplementary ends, the major mechanism was "blunt-end ligation" subsequent to "fill-in" or "blunting", with no insertions or large deletions; the microhomology-dependent joining with end deletion was less frequent. This is the first functional study of the NHEJ mechanism in mammalian male germ cell extracts. Our results demonstrate that testicular germ cell extracts promote predominantly accurate NHEJ for cohesive ends and very efficient blunt-end ligation, perhaps to preserve the genomic sequence with minimum possible alteration. Further, we demonstrate the ability of the extracts to catalyze in vitro plasmid homologous recombination, which suggests the existence of both NHEJ and HR pathways in germ cells. 相似文献
3.
4.
DNA double strand breaks (DSB) are the most serious form of DNA damage. Repair of DSBs is important to prevent chromosomal fragmentation, translocations and deletions. Non-homologous end joining (NHEJ) is one of three major pathways for the repair of DSBs in human cells. In this process two DNA ends are joined directly, usually with no sequence homology, although in the case of same polarity of the single stranded overhangs in DSBs, regions of microhomology are utilized. NHEJ is typically imprecise, a characteristic that is useful for immune diversification in lymphocytes in V(D)J recombination. The main components of the NHEJ system in eukaryotes are the catalytic subunit of DNA protein kinase (DNA-PKcs), Ku proteins, XRCC4, DNA ligase IV, and Artemis. This review focuses on the mechanisms an dregulation of DSB repair by NHEJ in mammalian cells. 相似文献
5.
Non-homologous DNA end joining 总被引:9,自引:0,他引:9
DNA double-strand breaks (DSBs) are a serious threat for the cell and when not repaired or misrepaired can result in mutations or chromosome rearrangements and eventually in cell death. Therefore, cells have evolved a number of pathways to deal with DSB including homologous recombination (HR), single-strand annealing (SSA) and non-homologous end joining (NHEJ). In mammals DSBs are primarily repaired by NHEJ and HR, while HR repair dominates in yeast, but this depends also on the phase of the cell cycle. NHEJ functions in all kinds of cells, from bacteria to man, and depends on the structure of DSB termini. In this process two DNA ends are joined directly, usually with no sequence homology, although in the case of same polarity of the single stranded overhangs in DSBs, regions of microhomology are utilized. The usage of microhomology is common in DNA end-joining of physiological DSBs, such as at the coding ends in V(D)J (variable(diversity) joining) recombination. The main components of the NHEJ system in eukaryotes are the catalytic subunit of DNA protein kinase (DNA-PK(cs)), which is recruited by DNA Ku protein, a heterodimer of Ku70 and Ku80, as well as XRCC4 protein and DNA ligase IV. A complex of Rad50/Mre11/Xrs2, a family of Sir proteins and probably other yet unidentified proteins can be also involved in this process. NHEJ and HR may play overlapping roles in the repair of DSBs produced in the S phase of the cell cycle or at replication forks. Aside from DNA repair, NHEJ may play a role in many different processes, including the maintenance of telomeres and integration of HIV-1 genome into a host genome, as well as the insertion of pseudogenes and repetitive sequences into the genome of mammalian cells. Inhibition of NHEJ can be exploited in cancer therapy in radio-sensitizing cancer cells. Identification of all key players and fundamental mechanisms underlying NHEJ still requires further research. 相似文献
6.
Pichia stipitis integrates linear homologous DNA fragments mainly ectopically. High rates of randomly occurring integration allow tagging mutagenesis with high efficiency using simply PCR amplificates of suitable selection markers from the P. stipitis genome. Linearization of an autonomously replicating vector caused a distinct increase of the transformation efficiency compared with the circular molecule. Cotransformation of a restriction endonuclease further enhanced the transformation efficiency. This effect was also observed with integrative vector DNA. In most cases vector integration in chromosomal targets did not depend on microhomologies, indicating that restriction-enzyme-mediated integration (REMI) does not play an essential role in P. stipitis. Small deletions were observed at the ends of the integrated vectors and in the target sites. Disruption of the PsKU80 gene increased the frequency of homologous integration considerably but resulted in a remarkable decrease of the transformation efficiency. These results suggest that in P. stipitis the nonhomologous end joining (NHEJ) pathway obviously predominates the homologous recombination pathway of double-strand break repair. 相似文献
7.
Odersky A Panyutin IV Panyutin IG Schunck C Feldmann E Goedecke W Neumann RD Obe G Pfeiffer P 《The Journal of biological chemistry》2002,277(14):11756-11764
In mammalian cells, nonhomologous DNA end joining (NHEJ) is considered the major pathway of double-strand break (DSB) repair. Rejoining of DSB produced by decay of (125)I positioned against a specific target site in plasmid DNA via a triplex-forming oligonucleotide (TFO) was investigated in cell-free extracts from Chinese hamster ovary cells. The efficiency and quality of NHEJ of the "complex" DSB induced by the (125)I-TFO was compared with that of "simple" DSB induced by restriction enzymes. We demonstrate that the extracts are indeed able to rejoin (125)I-TFO-induced DSB, although at approximately 10-fold decreased efficiency compared with restriction enzyme-induced DSB. The resulting spectrum of junctions is highly heterogeneous exhibiting deletions (1-30 bp), base pair substitutions, and insertions and reflects the heterogeneity of DSB induced by the (125)I-TFO within its target site. We show that NHEJ of (125)I-TFO-induced DSB is not a random process that solely depends on the position of the DSB but is driven by the availability of microhomology patches in the target sequence. The similarity of the junctions obtained with the ones found in vivo after (125)I-TFO-mediated radiodamage indicates that our in vitro system may be a useful tool to elucidate the mechanisms of ionizing radiation-induced mutagenesis and repair. 相似文献
8.
Rejoining of nonhomologous DNA termini plays a central role in processes of illegitimate recombination. In Xenopus egg extracts, DNA ends with noncomplementary 4-nucleotide antiparallel single-strand protrusions are assumed to be joined by formation of short mismatched overlap intermediates. The extents of these overlaps may be set by single fortuitously matching base pairs and determine the patterns of subsequent gap filling and nick ligation. Under conditions of alternative overlap settings, rules for the most probable joining pathway and the effects of mismatches on junction formation were analyzed. We show that in certain cases, fill-in and ligation converting overlap intermediates into covalently closed junctions may proceed in the presence of unrepaired mismatches, whereas in other cases, completion of junction formation is preceded by removal of mismatches. Results are discussed in relation with "alignment" proteins postulated to structurally support overlap heteroduplexes during junction formation. 相似文献
9.
The capacity to rectify DNA double-strand breaks (DSBs) is crucial for the survival of all species. DSBs can be repaired either by homologous recombination (HR) or non-homologous end joining (NHEJ). The long-standing notion that bacteria rely solely on HR for DSB repair has been overturned by evidence that mycobacteria and other genera have an NHEJ system that depends on a dedicated DNA ligase, LigD, and the DNA-end-binding protein Ku. Recent studies have illuminated the role of NHEJ in protecting the bacterial chromosome against DSBs and other clastogenic stresses. There is also emerging evidence of functional crosstalk between bacterial NHEJ proteins and components of other DNA-repair pathways. Although still a young field, bacterial NHEJ promises to teach us a great deal about the nexus of DNA repair and bacterial pathogenesis. 相似文献
10.
Enzymatic end-to end joining of DNA molecules 总被引:35,自引:0,他引:35
A way to join naturally occurring DNA molecules, independent of their base sequence, is proposed, based upon the presumed ability of the calf thymus enzyme terminal deoxynucleotidyltransferase to add homopolymer blocks to the ends of double-stranded DNA. To test the proposal, covalently closed dimer circles of the DNA of bacteriophage P22 were produced from linear monomers. It is found that P22 DNA as isolated will prime the terminal transferase reaction, but not in a satisfactory manner. Pre-treatment of the DNA with λ exonuclease, however, improves its priming ability. Terminal transferase can then be used to add oligo(dA) blocks to the ends of one population of P22 DNA molecules and oligo(dT) blocks to the ends of a second population, which enables the two DNAs to anneal to one another to form dimer circles. Subsequent treatment with a system of DNA repair enzymes converts the circles to covalently closed molecules at high efficiency. It is demonstrated that the success of the joining system does not depend upon any obvious unique property of the P22 DNA.The joining system yields several classes of by-products, among them closed circular molecules with branches. Their creation can be explained on the basis of the properties of terminal transferase and the DNA repair enzymes. 相似文献
11.
Non-homologous end joining as a mechanism of DNA repair. 总被引:3,自引:0,他引:3
D E Barnes 《Current biology : CB》2001,11(12):R455-R457
12.
Labhart P 《Molecular and cellular biology》1999,19(4):2585-2593
An extract from activated Xenopus eggs joins both matching and nonmatching ends of exogenous linear DNA substrates with high efficiency and fidelity (P. Pfeiffer and W. Vielmetter, Nucleic Acids Res. 16:907-924, 1988). In mammalian cells, such nonhomologous end joining (NHEJ) is known to require the Ku heterodimer, a component of DNA-dependent protein kinase. Here I investigated whether Ku is also required for the in vitro reaction in the egg extract. Immunological assays indicate that Ku is very abundant in the extract. I found that all NHEJ was inhibited by autoantibodies against Ku and that NHEJ between certain combinations of DNA ends was also decreased after immunodepletion of Ku from the extract. The formation of a joint between a DNA end with a 5'-protruding single strand (PSS) and an end with a 3'-PSS, between two ends with 3'-PSS, and between two blunt ends was most Ku dependent. On the other hand, NHEJ between two DNA ends bearing 5'-PSS was Ku independent. These results show that the Xenopus cell-free system will be useful to biochemically dissect the role of Ku in eukaryotic NHEJ. 相似文献
13.
Non-homologous DNA end joining in the mature rat brain 总被引:6,自引:0,他引:6
Recent evidence suggests that DNA double strand breaks (DSBs) are introduced in neurons during the course of normal development, and that repair of such DSBs is essential for neuronal survival. Here we describe a non-homologous DNA end joining (NHEJ) system in the adult rat brain that may be used to repair DNA DSBs. In the brain NHEJ system, blunt DNA ends are joined with lower efficiency than cohesive or non-matching protruding ends. Moreover, brain NHEJ is blocked by DNA ligase inhibitors or by dATP and can occur in the presence or absence of exogenously added ATP. Comparison of NHEJ activities in several tissues showed that brain and testis share similar mechanisms for DNA end joining, whereas the activity in thymus seems to utilize different mechanisms than in the nervous system. The developmental profile of brain NHEJ showed increasing levels of activity after birth, peaking at postnatal day 12 and then gradually decreasing along with age. Brain distribution analysis in adult animals showed that NHEJ activity is differentially distributed among different regions. We suggest that the DNA NHEJ system may be utilized in the postnatal brain for the repair of DNA double strand breaks introduced within the genome in the postnatal brain. 相似文献
14.
Modulation of DNA end joining by nuclear proteins 总被引:6,自引:0,他引:6
Liang L Deng L Chen Y Li GC Shao C Tischfield JA 《The Journal of biological chemistry》2005,280(36):31442-31449
DNA double strand breaks in mammalian cells are primarily repaired by homologous recombination and non-homologous end joining (NHEJ). NHEJ may either be error-free or mutagenic with deletions or insertions at the joint. Recent studies showed that DNA ends can also be joined via microhomologous sequences flanking the break point especially when proteins responsible for NHEJ, such as Ku, are absent. Microhomology-mediated end joining (MHEJ) is always accompanied by a deletion that spans one of the two homologous sequences and the intervening sequence, if any. In this study we evaluated several factors affecting the relative contribution of MHEJ to DNA end joining using nuclear extracts and DNA substrates containing 10-bp repeats at the ends. We found that the occurrence of MHEJ is determined by the relative abundance of nuclear proteins. At low DNA/protein ratios, an error-free end-joining mechanism predominated over MHEJ. As the DNA/protein ratio increased, MHEJ became predominant. We show that the nuclear proteins that contribute to the inhibition of the error-prone MHEJ include Ku and histone H1. Treatment of extracts with flap endonuclease 1 antiserum significantly reduced MHEJ. Addition of a 17-bp intervening sequence between the microhomologous sequences significantly reduced the efficiency of MHEJ. Thus, this cell-free assay provides a platform for evaluating factors modulating end joining. 相似文献
15.
Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. 总被引:25,自引:4,他引:25
下载免费PDF全文

Double strand DNA breaks in plants are primarily repaired via non-homologous end joining. However, little is known about the molecular events underlying this process. We have studied non-homologous end joining of linearized plasmid DNA with different termini configurations following transformation into tobacco cells. A variety of sequences were found at novel end junctions. Joining with no sequence alterations was rare. In most cases, deletions were found at both ends, and rejoining usually occurred at short repeats. A distinct feature of plant junctions was the presence of relatively large, up to 1.2 kb long, insertions (filler DNA), in approximately 30% of the analyzed clones. The filler DNA originated either from internal regions of the plasmid or from tobacco genomic DNA. Some insertions had a complex structure consisting of several reshuffled plasmid-related regions. These data suggest that double strand break repair in plants involves extensive end degradation, DNA synthesis following invasion of ectopic templates and multiple template switches. Such a mechanism is reminiscent of the synthesis-dependent recombination in bacteriophage T4. It can also explain the frequent 'DNA scrambling' associated with illegitimate recombination in plants. 相似文献
16.
J Harrington C L Hsieh J Gerton G Bosma M R Lieber 《Molecular and cellular biology》1992,12(10):4758-4768
Murine severe combined immune deficiency (scid) is marked by a 5,000-fold reduction in coding joint formation in V(D)J recombination of antigen receptors. Others have demonstrated a sensitivity to double-strand breaks generated by ionizing radiation and bleomycin. We were interested in establishing the extent of the defect in intramolecular and intermolecular DNA end joining in lymphoid and nonlymphoid cells from scid mice. We conducted a series of studies probing the ability of these cells to resolve free ends of linear DNA molecules having various biochemical end configurations. We find that the stable integration of linear DNA into scid fibroblasts is reduced 11- to 75-fold compared with that in normal fibroblasts. In contrast, intramolecular and intermolecular end joining occur at normal frequencies in scid lymphocytes and fibroblasts. This normal level of end joining is observed regardless of the type of overhang and regardless of the requirement for nucleolytic activities prior to ligation. The fact that free ends having a wide variety of end configurations are recircularized normally in scid cells rules out certain models for the defect in scid. We discuss the types of DNA end joining reactions that are and are not affected in this double-strand break repair defect in the context of a hairpin model for V(D)J recombination. 相似文献
17.
DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining 总被引:17,自引:12,他引:17
下载免费PDF全文

Feldmann E Schmiemann V Goedecke W Reichenberger S Pfeiffer P 《Nucleic acids research》2000,28(13):2585-2596
Non-homologous DNA end joining (NHEJ) is considered the major pathway of double-strand break (DSB) repair in mammalian cells and depends, among other things, on the DNA end-binding Ku70/80 heterodimer. To investigate the function of Ku in NHEJ we have compared the ability of cell-free extracts from wild-type CHO-K1 cells, Ku80-deficient xrs6 cells and Ku80-cDNA-complemented xrs6 cells (xrs6-Ku80) to rejoin different types of DSB in vitro. While the two Ku80-proficient extracts were highly efficient and accurate in rejoining all types of DNA ends, the xrs6 extract displayed strongly decreased NHEJ efficiency and accuracy. The lack of accuracy is most evident in non-homologous terminus configurations containing 3′-overhangs that abut a 5′-overhang or blunt end. While the sequences of the 3′-overhangs are mostly preserved by fill-in DNA synthesis in the Ku80-proficient extracts, they are always completely lost in the xrs6 extract so that, instead, small deletions displaying microhomology patches at their breakpoints arise. In summary, our results are consistent with previous results from Ku-deficient yeast strains and indicate that Ku may serve as an alignment factor that not only increases NHEJ efficiency but also accuracy. Furthermore, a secondary NHEJ activity is present in the absence of Ku which is error-prone and possibly assisted by base pairing interactions. 相似文献
18.
The repair of DNA double-strand breaks (DSBs) is critical for maintaining genome stability. Although the non-homologous end joining (NHEJ) pathway frequently results in minor changes in DNA sequence at the break site and occasionally the joining of previously unlinked DNA molecules, it is a major contributor to cell survival following exposure of mammalian cells to agents that cause DSBs. This repair mechanism is conserved in lower eukaryotes and in some prokaryotes although the majority of DSBs are repaired by recombinational repair pathways in these organisms. Here we will describe the biochemical properties of NHEJ factors from bacteria, Saccharomyces cerevisiae and mammals, and how physical and functional interactions among these factors co-ordinate the repair of DSBs. 相似文献
19.
Fanconi anemia (FA) is a genetic disorder associated with genomic instability and cancer predisposition. Cultured cells from FA patients display a high level of spontaneous chromosome breaks and an increased frequency of intragenic deletions, suggesting that FA cells may have deficiencies in properly processing DNA double strand breaks. In this study, an in vitro plasmid DNA end joining assay was used to characterize the end joining capabilities of nuclear extracts from diploid FA fibroblasts from complementation groups A, C, and D. The Fanconi anemia extracts had 3-9-fold less DNA end joining activity and rejoined substrates with significantly less fidelity than normal extracts. Wild-type end joining activity could be reconstituted by mixing FA-D extracts with FA-A or FA-C extracts, while mixing FA-A and FA-C extracts had no effect on end joining activity. Protein expression levels of the DNA-dependent protein kinase (DNA-PK)/Ku-dependent nonhomologous DNA end-joining proteins Xrcc4, DNA ligase IV, Ku70, and Ku86 in FA and normal extracts were indistinguishable, as were DNA-dependent protein kinase and DNA end binding activities. The end joining activity as measured by the assay was not sensitive to the DNA-PK inhibitor wortmannin or dependent on the nonhomologous DNA end-joining factor Xrcc4. However, when DNA/protein ratios were lowered, the end joining activity became wortmannin-sensitive and no difference in end joining activity was observed between normal and FA extracts. Taken together, these results suggest that the FA fibroblast extracts have a deficiency in a DNA end joining process that is distinct from the DNA-PK/Ku-dependent nonhomologous DNA end joining pathway. 相似文献
20.
Repair of meiotic double-strand breaks (DSBs) uses the homolog and recombination to yield crossovers while alternative pathways such as nonhomologous end joining (NHEJ) are suppressed. Our results indicate that NHEJ is blocked at two steps of DSB repair during meiotic prophase: first by the activity of the MCM-like protein MEI-218, which is required for crossover formation, and, second, by Rad51-related proteins SPN-B (XRCC3) and SPN-D (RAD51C), which physically interact and promote homologous recombination (HR). We further show that the MCM-like proteins also promote the activity of the DSB repair checkpoint pathway, indicating an early requirement for these proteins in DSB processing. We propose that when a meiotic DSB is formed in the absence of both MEI-218 and SPN-B or SPN-D, a DSB substrate is generated that can enter the NHEJ repair pathway. Indeed, due to its high error rate, multiple barriers may have evolved to prevent NHEJ activity during meiosis. 相似文献