首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
p53 protein conformation is an important determinant of its localization and activity. Changes in p53 conformation can be monitored by reactivity with wild-type conformation-specific (pAb-1620) or mutant conformation-specific (pAb-240) p53 antibodies. Wild-type p53 accumulated in a mutant (pAb-240 reactive) form when its proteasome-dependent degradation was blocked during recovery from stress treatment and in cells co-expressing p53 and MDM2. This suggests that conformational change precedes wild-type p53 degradation by the proteasome. MDM2 binding to the p53 N terminus could induce a conformational change in wild-type p53. Interestingly, this conformational change was opposed by heat-shock protein 90 and did not require the MDM2 RING-finger domain and p53 ubiquitination. Finally, ubiquitinated p53 accumulated in a pAb-240 reactive form when p53 degradation was blocked by proteasome inhibition, and a p53-ubiquitin fusion protein displayed a mutant-only conformation in MDM2-null cells. These results support a model in which MDM2 binding induces a conformational change that is opposed by heat-shock protein 90 and precedes p53 ubiquitination. The covalent attachment of ubiquitin may "lock" p53 in a mutant conformation in the absence of MDM2-binding and prior to its degradation by the proteasome.  相似文献   

2.
Although the N-terminal BOX-I domain of the tumor suppressor protein p53 contains the primary docking site for MDM2, previous studies demonstrated that RNA stabilizes the MDM2.p53 complex using a p53 mutant lacking the BOX-I motif. In vitro assays measuring the specific activity of MDM2 in the ligand-free and RNA-bound state identified a novel MDM2 interaction site in the core domain of p53. As defined using phage-peptide display, the RNA.MDM2 isoform exhibited a notable switch in peptide binding specificity, with enhanced affinity for novel peptide sequences in either p53 or small nuclear ribonucleoprotein-U (snRNP-U) and substantially reduced affinity for the primary p53 binding site in the BOX-I domain. The consensus binding site for the RNA.MDM2 complex within p53 is SGXLLGESXF, which links the S9-S10 beta-sheets flanking the BOX-IV and BOX-V motifs in the core domain and which is a site of reversible conformational flexibility in p53. Mutation of conserved amino acids in the linker at Ser(261) and Leu(264), which bridges the S9-S10 beta-sheets, stimulated p53 activity from reporter templates and increased MDM2-dependent ubiquitination of p53. Furthermore, mutation of the conserved Phe(270) within the S10 beta-sheet resulted in a mutant p53, which binds more stably to RNA.MDM2 complexes in vitro and which is strikingly hyper-ubiquitinated in vivo. Introducing an Ala(19) mutation into the p53(F270A) protein abolished both RNA.MDM2 complex binding and hyper-ubiquitination in vivo, thus indicating that p53(F270A) protein hyper-ubiquitination depends upon MDM2 binding to its primary site in the BOX-I domain. Together, these data identify a novel MDM2 binding interface within the S9-S10 beta-sheet region of p53 that plays a regulatory role in modulating the rate of MDM2-dependent ubiquitination of p53 in cells.  相似文献   

3.
Wild-type p53 is a conformationally labile protein that undergoes nuclear-cytoplasmic shuttling. MDM2-mediated ubiquitination promotes p53 nuclear export by exposing or activating a nuclear export signal (NES) in the C terminus of p53. We observed that cancer-derived p53s with a mutant (primary antibody 1620-/pAb240+) conformation localized in the cytoplasm to a greater extent and displayed increased susceptibility to ubiquitination than p53s with a more wild-type (primary antibody 1620+/pAb240-) conformation. The cytoplasmic localization of mutant p53s required the C-terminal NES and an intact ubiquitination pathway. Mutant p53 ubiquitination occurred at lysines in both the DNA-binding domain (DBD) and C terminus. Interestingly, Lys to Arg mutations that inhibited ubiquitination restored nuclear localization to mutant p53 but had no apparent effect on p53 conformation. Further studies revealed that wild-type p53, like mutant p53, is ubiquitinated by MDM2 in both the DBD and C terminus and that ubiquitination in both regions contributes to its nuclear export. MDM2 binding can induce a conformational change in wild-type p53, but this conformational change is insufficient to promote p53 nuclear export in the absence of MDM2 ubiquitination activity. Taken together, these results support a stepwise model for mutant and wild-type p53 nuclear export. In this model, the conformational change induced by either the cancer-derived mutation or MDM2 binding precedes p53 ubiquitination. The addition of ubiquitin to DBD and C-terminal lysines then promotes nuclear export via the C-terminal NES.  相似文献   

4.
Wild-type p53 is degraded in part through the ubiquitin proteolysis pathway. Recent studies indicate that MDM2 can bind p53 and promote its rapid degradation although the molecular basis for this degradation has not been clarified. This report demonstrates that MDM2 can promote the ubiquitination of wild-type p53 and cancer-derived p53 mutants in transiently transfected cells. Deletion mutants that disrupted the oligomerization domain of p53 displayed low binding affinity for MDM2 and were poor substrates for ubiquitination. However, efficient MDM2 binding and ubiquitination were restored when an oligomerization-deficient p53 mutant was fused to the dimerization domain from another protein. These results indicate that oligomerization is required for p53 to efficiently bind and be ubiquitinated by MDM2. p53 ubiquitination was inhibited in cells exposed to UV radiation, and this inhibition coincided with a decrease in MDM2 protein levels and p53.MDM2 complex formation. In contrast, p53 dimerization was unaffected following UV treatment. These results suggest that UV radiation may stabilize p53 by blocking the ubiquitination and degradation of p53 mediated by MDM2.  相似文献   

5.
6.
MDM2 is an E3 ubiquitin ligase that targets p53 for proteasomal degradation. Recent studies have shown, however, that the ring-finger domain (RFD) of MDM2, where the ubiquitin E3 ligase activity resides, is necessary but not sufficient for p53 ubiquitination, suggesting that an additional activity of MDM2 might be required. To test this possibility, we generated a series of MDM2/MDMX chimeric proteins to assess the contribution of each domain of MDM2 to the ubiquitination process. MDMX is a close structural homolog of MDM2 that nevertheless lacks the E3 ligase activity in vivo. We demonstrate here that MDMX gains self-ubiquitination activity and becomes extremely unstable upon introduction of the MDM2 RFD, indicating that the RFD is essential for self-ubiquitination. This MDMX chimeric protein, however, is unable to ubiquitinate p53 in vivo despite its E3 ligase activity and binding to p53, separating the self-ubiquitination activity of MDM2 from its ability to ubiquitinate p53. Significantly, fusion of the central acidic domain (AD) of MDM2 to the MDMX chimeric protein renders the protein fully capable of ubiquitinating p53, and p53 ubiquitination is associated with p53 degradation and nuclear export. Moreover, the AD mini protein expressed in trans can functionally rescue the AD-lacking MDM2 mutant, further supporting a critical role for the AD in MDM2-mediated p53 ubiquitination.  相似文献   

7.
The control of p53 ubiquitination by MDM2 provides a model system to define how an E3-ligase functions on a conformationally flexible substrate. The mechanism of MDM2-mediated ubiquitination of p53 has been analyzed by deconstructing, in vitro, the MDM2-dependent ubiquitination reaction. Surprisingly, ligands binding to the hydrophobic cleft of MDM2 do not inhibit its E3-ligase function. However, peptides from within the DNA binding domain of p53 that bind the acid domain of MDM2 inhibit ubiquitination of p53, localizing a motif that harbors a key ubiquitination signal. The binding of ligands to the N-terminal hydrophobic cleft of MDM2 reactivates, in vitro and in vivo, MDM2-catalyzed ubiquitination of p53F19A, a mutant p53 normally refractory to MDM2-catalyzed ubiquitination. We propose a model in which the interaction between the p53-BOX-I domain and the N terminus of MDM2 promotes conformational changes in MDM2 that stabilize acid-domain interactions with a ubiquitination signal in the DNA binding domain of the p53 tetramer.  相似文献   

8.
The tumor suppressor p53 has evolved a MDM2-dependent feedback loop that promotes p53 protein degradation through the ubiquitin–proteasome system. MDM2 is an E3-RING containing ubiquitin ligase that catalyzes p53 ubiquitination by a dual-site mechanism requiring ligand occupation of its N-terminal hydrophobic pocket, which then stabilizes MDM2 binding to the ubiquitination signal in the DNA-binding domain of p53. A unique pseudo-substrate motif or “lid” in MDM2 is adjacent to its N-terminal hydrophobic pocket, and we have evaluated the effects of the flexible lid on the dual-site ubiquitination reaction mechanism catalyzed by MDM2. Deletion of this pseudo-substrate motif promotes MDM2 protein thermoinstability, indicating that the site can function as a positive regulatory element. Phospho-mimetic mutation in the pseudo-substrate motif at codon 17 (MDM2S17D) stabilizes the binding of MDM2 towards two distinct peptide docking sites within the p53 tetramer and enhances p53 ubiquitination. Molecular modeling orientates the phospho-mimetic pseudo-substrate motif in equilibrium over a charged surface patch on the MDM2 at Arg97/Lys98, and mutation of these residues to the MDM4 equivalent reverses the activating effect of the phospho-mimetic mutation on MDM2 function. These data highlight the ability of the pseudo-substrate motif to regulate the allosteric interaction between the N-terminal hydrophobic pocket of MDM2 and its central acidic domain, which stimulates the E3 ubiquitin ligase function of MDM2. This model of MDM2 regulation implicates an as yet undefined lid-kinase as a component of pro-oncogenic pathways that stimulate the E3 ubiquitin ligase function of MDM2 in cells.  相似文献   

9.
Stabilization of the MDM2 oncoprotein by mutant p53   总被引:3,自引:0,他引:3  
MDM2 is a short-lived protein that regulates p53 degradation. We report here that transient coexpression of MDM2 and several p53 hotspot mutants resulted in stabilization and increased expression of MDM2. Ectopic expression of the mutant p53(175H) allele by recombinant adenovirus infection or stable transfection also stabilized endogenous MDM2 in p53-null cells. A panel of human tumor cell lines expressing different endogenous mutant p53 alleles also contained stabilized nuclear MDM2 at elevated levels when compared with p53-null cells. MDM2 was present in complexes with mutant p53 in tumor cells, and stabilization of MDM2 required direct binding to mutant p53. These results reveal a novel property of mutant p53 and a unique feature of tumors with p53 missense mutations. Accumulation of stable MDM2 may contribute to tumorigenesis through its p53-independent transforming functions.  相似文献   

10.
The ubiquitin (Ub)-proteasome system plays a pivotal role in the regulation of p53 protein stability and activity. p53 is ubiquitinated and destabilized by MDM2 and several other Ub E3s, whereas it is deubiquitinated and stabilized by Ub-specific protease (USP)7 and USP10. Here we show that the ovarian tumour domain-containing Ub aldehyde-binding protein 1 (Otub1) is a novel p53 regulator. Otub1 directly suppresses MDM2-mediated p53 ubiquitination in cells and in vitro. Overexpression of Otub1 drastically stabilizes and activates p53, leading to apoptosis and marked inhibition of cell proliferation in a p53-dependent manner. These effects are independent of its catalytic activity but require residue Asp88. Mutation of Asp88 to Ala (Otub1(D88A)) abolishes activity of Otub1 to suppress p53 ubiquitination. Further, wild-type Otub1 and its catalytic mutant (Otub1(C91S)), but not Otub1(D88A), bind to the MDM2 cognate E2, UbcH5, and suppress its Ub-conjugating activity in vitro. Overexpression of Otub1(D88A) or ablation of endogenous Otub1 by siRNA markedly impaired p53 stabilization and activation in response to DNA damage. Together, these results reveal a novel function for Otub1 in regulating p53 stability and activity.  相似文献   

11.
Pirh2, a recently identified ubiquitin-protein ligase, has been reported to promote p53 degradation. Pirh2 physically interacts with p53 and promotes ubiquitination of p53 independently of MDM2. Like MDM2, Pirh2 is thought to participate in an autoregulatory feedback loop that controls p53 function. We have previously reported that Pirh2 was overexpressed in human and murine lung cancers as compared to uninvolved lung tissue. Pirh2 increase could potentially cause degradation of wildtype p53 and reduce its tumor suppression function in the lung tumor cells. Since Pirh2 has been reported to be transactivated by p53, however, the mechanisms by which a high level of Pirh2 expression is maintained in tumor cells despite low level of wildtype p53 protein are unclear. In order to evaluate p53 involvement in the transactivation of Pirh2, we evaluated Pirh2, MDM2, p53 and p21 expression with Western blot analysis and real time PCR after gamma irradiation or cisplatin DNA damage treatment using human cancer cell lines containing wildtype (A549, MCF-7), mutant (H719) and null (H1299) p53. Surprisingly, Pirh2 expression was not affected by the presence of wildtype p53 in the cancer cells. In contrast, MDM2 was upregulated by wildtype p53 in A549 and MCF-7 cells and was absent from the H1299 and the H719 cells. We conclude that Pirh2 operates in a distinct manner from MDM2 in response to DNA damage in cancer cells. Pirh2 elevation in p53 null cells indicates the existence of additional molecular mechanisms for Pirh2 upregulation and suggests that p53 is not the sole target of Pirh2 ubiquitin ligase activity.  相似文献   

12.
Regulation of p53 and MDM2 activity by MTBP   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

13.
Numerous p53 missense mutations possess gain-of-function activities. Studies in mouse models have demonstrated that the stabilization of p53 R172H (R175H in human) mutant protein, by currently unknown factors, is a prerequisite for its oncogenic gain-of-function phenotype such as tumour progression and metastasis. Here we show that MDM2-dependent ubiquitination and degradation of p53 R175H mutant protein in mouse embryonic fibroblasts is partially inhibited by increasing concentration of heat shock protein 70 (HSP70/HSPA1-A). These phenomena correlate well with the appearance of HSP70-dependent folding intermediates in the form of dynamic cytoplasmic spots containing aggregate-prone p53 R175H and several molecular chaperones. We propose that a transient but recurrent interaction with HSP70 may lead to an increase in mutant p53 protein half-life. In the presence of MDM2 these pseudoaggregates can form stable amyloid-like structures, which occasionally merge into an aggresome. Interestingly, formation of folding intermediates is not observed in the presence of HSC70/HSPA8, the dominant-negative K71S variant of HSP70 or HSP70 inhibitor. In cancer cells, where endogenous HSP70 levels are already elevated, mutant p53 protein forms nuclear aggregates without the addition of exogenous HSP70. Aggregates containing p53 are also visible under conditions where p53 is partially unfolded: 37°C for temperature-sensitive variant p53 V143A and 42°C for wild-type p53. Refolding kinetics of p53 indicate that HSP70 causes transient exposure of p53 aggregate-prone domain(s). We propose that formation of HSP70- and MDM2-dependent protein coaggregates in tumours with high levels of these two proteins could be one of the mechanisms by which mutant p53 is stabilized. Moreover, sequestration of p73 tumour suppressor protein by these nuclear aggregates may lead to gain-of-function phenotypes.  相似文献   

14.
To investigate the effect of mutations in the p53 C-terminal domain on MDM2-mediated degradation, we introduced single and multiple point mutations into a human p53 cDNA at four putative acetylation sites (amino acid residues 372, 373, 381, and 382). Substitution of all four lysine residues by alanines (the A4 mutant) and single lysine-to-alanine substitutions were functional in sequence-specific DNA binding and transactivation; however, the A4 mutant protein was resistant to MDM2-mediated degradation, whereas the single lysine substitutions were not. Although the A4 mutant protein and the single lysine substitutions both bound MDM2 reasonably well, the single lysine substitutions underwent normal MDM2-dependent ubiquitination, whereas the A4 protein was inefficiently ubiquitinated. In addition, the A4 mutant protein was found in the cytoplasm as well as in the nucleus of a subpopulation of cells, unlike wild-type p53, which is mostly nuclear. The partially cytoplasmic distribution of A4 mutant protein was not due to a defect in nuclear import because inhibition of nuclear export by leptomycin B resulted in nuclear accumulation of the protein. Taken together, the data suggest that mutations in the putative acetylation sites of the p53 C-terminal domain interfere with ubiquitination, thereby regulating p53 degradation.  相似文献   

15.
The p53 tumor suppressor is regulated by the MDM2 oncoprotein through a negative feedback mechanism. MDM2 promotes the ubiquitination and proteasome-dependent degradation of p53, possibly by acting as a ubiquitin ligase. In cervical cancer cells containing high-risk human papillomaviruses (HPV), p53 is also targeted for degradation by the HPV E6 oncoprotein in combination with the cellular E6-AP ubiquitin ligase. In this report, we describe the identification of efficient antisense oligonucleotides against human E6-AP. The roles of MDM2 and E6-AP in p53 regulation were investigated using a novel E6-AP antisense oligonucleotide and a previously characterized MDM2 antisense oligonucleotide. In HPV16-positive and HPV-18 positive cervical cancer cells, inhibition of E6-AP, but not MDM2, expression results in significant induction of p53. In HPV-negative tumor cells, p53 is activated by inhibition of MDM2 but not E6-AP. Furthermore, treatment with both E6-AP and MDM2 antisense oligonucleotides in HPV-positive cells does not lead to further induction of p53 over inhibition of E6-AP alone. Therefore, E6-AP-mediated degradation is dominant over MDM2 in cervical cancer cells but does not have a significant role in HPV-negative cells.  相似文献   

16.
The E3 ubiquitin ligase, MDM2, uses a dual-site mechanism to ubiquitinate and degrade the tumor suppressor protein p53, involving interactions with the N-terminal hydrophobic pocket and the acidic domain of MDM2. The results presented here demonstrate that MDM2 also uses this same dual-site mechanism to bind to the cell fate determinant NUMB with both the N-terminal hydrophobic pocket and the acidic domain of MDM2 also involved in forming the interaction with NUMB. Furthermore, the acidic domain interactions are crucial for MDM2-mediated ubiquitination of NUMB. Contrary to p53, where two separate domains form the interface with MDM2, only one region within the phosphotyrosine binding domain of NUMB (amino acids 113-148) mediates binding to both these regions of MDM2. By binding to both domains on MDM2, NUMB disrupts the MDM2-p53 complex and MDM2-catalyzed ubiquitination of p53. Therefore, we have identified the mechanism NUMB uses to regulate the steady-state levels of the p53 in cells. By targeting the acidic domain of MDM2 using acid domain-binding ligands we can overcome MDM2-mediated ubiquitination and degradation of NUMB impacting on the stabilization of p53 in cells. Furthermore, delivery of MDM2 acid domain-binding ligands to cancer cells promotes p53-dependent growth arrest and the induction of apoptosis. This highlights the dual-site mechanism of MDM2 on another physiological substrate and identifies the acid domain as well as N terminus as a potential target for small molecules that inhibit MDM2.  相似文献   

17.
18.
19.
20.
BackgroundP53 is the most frequently mutated gene in most tumour types, and the mutant p53 protein accumulates at high levels in tumours to promote tumour development and progression. Thus, targeting mutant p53 for degradation is one of the therapeutic strategies used to manage tumours that depend on mutant p53 for survival. Buxus alkaloids are traditionally used in the treatment of cardiovascular diseases. We found that triterpenoid alkaloids extracted from Buxus sinica found in the Yunnan Province exhibit anticancer activity by depleting mutant p53 levels in colon cancer cells.PurposeTo explore the anticancer mechanism of action of the triterpenoid alkaloid KBA01 compound by targeting mutant p53 degradation.Study design and methodsDifferent mutant p53 cell lines were used to evaluate the anticancer activity of KBA01. MTT assay, colony formation assay and cell cycle analysis were performed to examine the effect of KBA01 on cancer cell proliferation. Western blotting and qPCR were used to investigate effects of depleting mutant p53, and a ubiquitination assay was used to determine mutant p53 ubiquitin levels after cells were treated with the compound. Co-IP and small interfering RNA assays were used to explore the effects of KBA01 on the interaction of Hsp90 with mutant p53.ResultsThe triterpenoid alkaloid KBA01 can induce G2/M cell cycle arrest and the apoptosis of HT29 colon cancer cells. KBA01 decreases the stability of DNA contact mutant p53 proteins through the proteasomal pathway with minimal effects on p53 mutant protein conformation. Moreover, KBA01 enhances the interaction of mutant p53 with Hsp70, CHIP and MDM2, and knocking down CHIP and MDM2 stabilizes mutant p53 levels in KBA01-treated cells. In addition, KBA01 disrupts the HSF1-mutant p53-Hsp90 complex and releases mutant p53 to enable its MDM2- and CHIP-mediated degradation.ConclusionOur study reveals that KBA01 depletes mutant p53 protein in a chaperone-assisted ubiquitin/proteasome degradation pathway in cancer cells, providing insights into potential strategies to target mutant p53 tumours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号