首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Epigenetics》2013,8(4):235-240
Genomic imprinting refers to silencing of one parental allele in the zygotes of gametes depending upon the parent of origin. Loss of imprinting (LOI) is the gain of function from the silent allele that can have a maximum effect of doubling the gene dosage. LOI may play a significant role in the etiology of intrauterine growth restriction (IUGR). Using placental tissue from 10 normal and 7 IUGR pregnancies, we conducted a systematic survey of the expression of a panel of 74 “putatively” imprinted genes using quantitative RT-PCR. We found that 52/74 (~70%) of the genes were expressed in human placentas. Nine of the 52 (17%) expressed genes were significantly differentially expressed between normal and IUGR placentas; 5 were up-regulated (PHLDA2, ILK2, NNAT, CCDC86, PEG10) and 4 down-regulated (PLAGL1, DHCR24, ZNF331, CDKAL1). We also assessed LOI profile of 14 imprinted genes in 14 normal and 24 IUGR placentas using a functional and sensitive assay developed in our laboratory. Little LOI was observed in any placentas for 5 of the genes (PEG10, PHLDA2, MEG3, EPS15, CD44). With the 149 heterozygosities examined, 40 (26.8%) exhibited LOI > 3%. Some genes exhibited frequent LOI in placentas regardless of the disease status (IGF2, TP73, MEST, SLC22A18, PEG3), while others exhibited LOI only in IUGR placentas (PLAGL1, DLK1, H19, SNRPN). Importantly, there was no correlation between gene expression and LOI profile. Our study suggests that genomic imprinting may play a role in IUGR pathogenesis, but mechanisms other than LOI may contribute to dysregulation of imprinted genes.  相似文献   

2.
PHLDA2 is an imprinted gene in cattle   总被引:1,自引:0,他引:1  
Genomic imprinting is an epigenetic non-Mendelian phenomenon found predominantly in placental mammals. Imprinted genes display differential expression in the offspring depending on whether the gene is maternally or paternally inherited. Currently, some 100 imprinted genes have been reported in mammals, and while some of these genes are imprinted across most mammalian species, others have been shown to be imprinted in only a few species. The PHLDA2 gene that codes for a pleckstrin homology-like domain, family A (member 2), protein has to date been shown to be a maternally expressed imprinted gene in humans, mice and pigs. Genes subject to imprinting can have major effects on mammalian growth, development and disease. For instance, disruption of imprinted genes can lead to aberrant growth syndromes in cloned domestic mammals, and it has been demonstrated that PHLDA2 mRNA expression levels are aberrant in the placenta of somatic clones of cattle. In this study, we demonstrate that PHLDA2 is expressed across a range of cattle foetal tissues and stages and provide the first evidence that PHLDA2 is a monoallelically expressed imprinted gene in cattle foetal tissues, and also in the bovine placenta.  相似文献   

3.
4.
Imprinted genes are expressed in a parent-of-origin manner by epigenetic modifications that silence either the paternal or maternal allele. They are widely expressed in fetal and placental tissues and are essential for normal placental development. In general, paternally expressed genes enhance feto-placental growth while maternally expressed genes limit conceptus growth, consistent with the hypothesis that imprinting evolved in response to the conflict between parental genomes in the allocation of maternal resources to fetal growth. Using targeted deletion, uniparental duplication, loss of imprinting and transgenic approaches, imprinted genes have been shown to determine the transport capacity of the definitive mouse placenta by regulating its growth, morphology and transporter abundance. Imprinted genes in the placenta are also responsive to environmental challenges and adapt placental phenotype to the prevailing nutritional conditions, in part, by varying their epigenetic status. In addition, interplay between placental and fetal imprinted genes is important in regulating resource partitioning via the placenta both developmentally and in response to environmental factors. By balancing the opposing parental drives on resource allocation with the environmental signals of nutrient availability, imprinted genes, like the Igf2-H19 locus, may act as nutrient sensors and optimise the fetal acquisition of nutrients for growth. These genes, therefore, have a major role in the epigenetic regulation of placental phenotype with long term consequences for the developmental programming of adult health and disease.  相似文献   

5.
J M Stringer  A J Pask  G Shaw  M B Renfree 《Heredity》2014,113(2):145-155
Genomic imprinting has been identified in therian (eutherian and marsupial) mammals but not in prototherian (monotreme) mammals. Imprinting has an important role in optimising pre-natal nutrition and growth, and most imprinted genes are expressed and imprinted in the placenta and developing fetus. In marsupials, however, the placental attachment is short-lived, and most growth and development occurs post-natally, supported by a changing milk composition tailor-made for each stage of development. Therefore there is a much greater demand on marsupial females during post-natal lactation than during pre-natal placentation, so there may be greater selection for genomic imprinting in the mammary gland than in the short-lived placenta. Recent studies in the tammar wallaby confirm the presence of genomic imprinting in nutrient-regulatory genes in the adult mammary gland. This suggests that imprinting may influence infant post-natal growth via the mammary gland as it does pre-natally via the placenta. Similarly, an increasing number of imprinted genes have been implicated in regulating feeding and nurturing behaviour in both the adult and the developing neonate/offspring in mice. Together these studies provide evidence that genomic imprinting is critical for regulating growth and subsequently the survival of offspring not only pre-natally but also post-natally.  相似文献   

6.

Background

Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE) is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue.

Results

Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA) and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes) remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs) were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%).

Conclusions

Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes in the human term placenta. ZNF331 is imprinted in human term placenta and might be a new ubiquitously imprinted gene, part of a primate-specific locus. Demonstration of partial imprinting of PHACTR2 calls for re-evaluation of the allelic pattern of expression for the PHACTR2-PLAGL1 locus. ASE was common in human term placenta.  相似文献   

7.
Imprinted genes play vital roles in the placental development and fetal growth in eutherian mammals. DCN (decorin), PON2 (paraoxonase 2) and PEG3 (paternally expressed 3) genes have been identified as imprinted genes in the mouse. Here, we detected the imprinting status of three genes in the porcine placenta on DG90 (day 90 of gestation) and the expression differences in Yorkshire and Meishan placenta on DG26, DG55 and DG90. The results indicated that the DCN and PON2 genes were not imprinted genes, while the PEG3 gene showed paternal monoallelic expression in porcine placenta. The expression of the DCN gene increased from DG26 to DG90 in both Yorkshire and Meishan pig placenta. However, this gene expression was greater in Yorkshire than Meishan pig on DG55. The expression of the PON2 gene was greater in Meishan pig than that in Yorkshire on DG26 and DG90. The PEG3 gene expression was not affected by day of pregnancy or breed. Data from the present study contribute to function genomic of porcine placental development.  相似文献   

8.
9.
Wang X  Soloway PD  Clark AG 《Genetics》2011,189(1):109-122
Many questions about the regulation, functional specialization, computational prediction, and evolution of genomic imprinting would be better addressed by having an exhaustive genome-wide catalog of genes that display parent-of-origin differential expression. As a first-pass scan for novel imprinted genes, we performed mRNA-seq experiments on embryonic day 17.5 (E17.5) mouse placenta cDNA samples from reciprocal cross F1 progeny of AKR and PWD mouse strains and quantified the allele-specific expression and the degree of parent-of-origin allelic imbalance. We confirmed the imprinting status of 23 known imprinted genes in the placenta and found that 12 genes reported previously to be imprinted in other tissues are also imprinted in mouse placenta. Through a well-replicated design using an orthogonal allelic-expression technology, we verified 5 novel imprinted genes that were not previously known to be imprinted in mouse (Pde10, Phf17, Phactr2, Zfp64, and Htra3). Our data suggest that most of the strongly imprinted genes have already been identified, at least in the placenta, and that evidence supports perhaps 100 additional weakly imprinted genes. Despite previous appearance that the placenta tends to display an excess of maternally expressed imprinted genes, with the addition of our validated set of placenta-imprinted genes, this maternal bias has disappeared.  相似文献   

10.
11.
Genomic imprinting disorders often exhibit delayed neurobehavioral development, suggesting this unique mechanism of epigenetic regulation plays a role in mental and neurological health. While major errors in imprinting have been linked to adverse health outcomes, there has been little research conducted on how moderate variability in imprinted gene expression within a population contributes to differences in neurobehavioral outcomes, particularly at birth. Here, we profiled the expression of 108 known and putative imprinted genes in human placenta samples from 615 infants assessed by the Neonatal Intensive Care Unit (NICU) Network Neurobehavioral Scales (NNNS). Data reduction identified 10 genes (DLX5, DHCR24, VTRNA2-1, PHLDA2, NPAP1, FAM50B, GNAS-AS1, PAX8-AS1, SHANK2, and COPG2IT1) whose expression could distinguish between newborn neurobehavioral profiles derived from the NNNS. Clustering infants based on the expression pattern of these genes identified 2 groups of infants characterized by reduced quality of movement, increased signs of asymmetrical and non-optimal reflexes, and increased odds of demonstrating increased signs of physiologic stress and abstinence. Overall, these results suggest that common variation in placental imprinted gene expression is linked to suboptimal performance on scales of neurological functioning as well as with increased signs of physiologic stress, highlighting the central importance of the control of expression of these genes in the placenta for neurobehavioral development.  相似文献   

12.
Genomic imprinting is generally believed to be conserved in all mammals except for egg-laying monotremes, suggesting that it is closely related to placental and fetal growth. As expected, the imprinting status of most imprinted genes is conserved between mouse and human, and some are imprinted even in marsupials. On the other hand, a small number of genes were reported to exhibit species-specific imprinting that is not necessarily accounted for by either the placenta or conflict hypotheses. Since mouse and human represent a single, phylogenetically restricted clade in the mammalian class, a much broader comparison including mammals diverged earlier than rodents is necessary to fully understand the species-specificity and variation in evolution of genomic imprinting. Indeed, comparative analysis of a species-specific imprinted gene Impact using a broader range of mammals led us to propose an alternative dosage control hypothesis for the evolution of genomic imprinting.  相似文献   

13.
Exposure to endocrine disruptors is associated with developmental defects. One compound of concern, to which humans are widely exposed, is bisphenol A (BPA). In model organisms, BPA exposure is linked to metabolic disorders, infertility, cancer, and behavior anomalies. Recently, BPA exposure has been linked to DNA methylation changes, indicating that epigenetic mechanisms may be relevant. We investigated effects of exposure on genomic imprinting in the mouse as imprinted genes are regulated by differential DNA methylation and aberrant imprinting disrupts fetal, placental, and postnatal development. Through allele-specific and quantitative real-time PCR analysis, we demonstrated that maternal BPA exposure during late stages of oocyte development and early stages of embryonic development significantly disrupted imprinted gene expression in embryonic day (E) 9.5 and 12.5 embryos and placentas. The affected genes included Snrpn, Ube3a, Igf2, Kcnq1ot1, Cdkn1c, and Ascl2; mutations and aberrant regulation of these genes are associated with imprinting disorders in humans. Furthermore, the majority of affected genes were expressed abnormally in the placenta. DNA methylation studies showed that BPA exposure significantly altered the methylation levels of differentially methylated regions (DMRs) including the Snrpn imprinting control region (ICR) and Igf2 DMR1. Moreover, exposure significantly reduced genome-wide methylation levels in the placenta, but not the embryo. Histological and immunohistochemical examinations revealed that these epigenetic defects were associated with abnormal placental development. In contrast to this early exposure paradigm, exposure outside of the epigenetic reprogramming window did not cause significant imprinting perturbations. Our data suggest that early exposure to common environmental compounds has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta.  相似文献   

14.
The Evolution of Genomic Imprinting   总被引:1,自引:1,他引:0       下载免费PDF全文
A. Mochizuki  Y. Takeda    Y. Iwasa 《Genetics》1996,144(3):1283-1295
In some mammalian genes, the paternally and maternally derived alleles are expressed differently: this phenomenon is called genomic imprinting. Here we study the evolution of imprinting using multivariate quantitative genetic models to examine the feasibility of the genetic conflict hypothesis. This hypothesis explains the observed imprinting patterns as an evolutionary outcome of the conflict between the paternal and maternal alleles. We consider the expression of a zygotic gene, which codes for an embryonic growth factor affecting the amount of maternal resources obtained through the placenta. We assume that the gene produces the growth factor in two different amounts depending on its parental origin. We show that genomic imprinting evolves easily if females have some probability of multiple partners. This is in conflict with the observation that not all genes controlling placental development are imprinted and that imprinting in some genes is not conserved between mice and humans. We show however that deleterious mutations in the coding region of the gene create selection against imprinting.  相似文献   

15.
Genomic imprinting is an epigenetic phenomenon whereby genetically identical alleles are differentially expressed dependent on their parent-of-origin. Genomic imprinting has independently evolved in flowering plants and mammals. In both organism classes, imprinting occurs in embryo-nourishing tissues, the placenta and the endosperm, respectively, and it has been proposed that imprinted genes regulate the transfer of nutrients to the developing progeny. Many imprinted genes are located in the vicinity of DNA-methylated transposon or repeat sequences, implying that transposon insertions are associated with the evolution of imprinted loci. The antagonistic action of DNA methylation and Polycomb group-mediated histone methylation seems important for the regulation of many imprinted plant genes, whereby the position of such epigenetic modifications can determine whether a gene will be mainly expressed from either the maternally or paternally inherited alleles. Furthermore, long non-coding RNAs seem to play an as yet underappreciated role for the regulation of imprinted plant genes. Imprinted expression of a number of genes is conserved between monocots and dicots, suggesting that long-term selection can maintain imprinted expression at some loci.  相似文献   

16.
17.
Mice with uniparental disomies (uniparental duplications) for defined regions of certain chromosomes, or certain disomies, show a range of developmental abnormalities most of which affect growth. These defects can be attributed to incorrect dosages of maternal or paternal copies of imprinted genes lying within the regions involved. Combinations of certain partial disomies result in interactions between the imprinting effects that seemingly independently affect foetal and/or placental growth in different ways or modify neonatal and postnatal development. The findings are generally in accord with the 'conflict hypothesis' for the evolution of genomic imprinting but do not demonstrate common growth axes within which imprinted genes may interact. Instead, it would seem that any gene that favours embryonic/foetal development, at consequent cost to the mother, will have been subject to evolutionary selection for only paternal allele expression. Reciprocally, any gene that reduces embryonic/foetal growth to limit disadvantage to the mother will have been selected for only maternal allele expression. It is concluded that survival of the placenta is core to the evolution of imprinting.  相似文献   

18.
Placental growth retardation due to loss of imprinting of Phlda2   总被引:5,自引:0,他引:5  
The maternally expressed/paternally silenced genes Phlda2 (a.k.a. Ipl/Tssc3), Slc22a1l, Cdkn1c, Kcnq1, and Ascl2 are clustered in an imprinted domain on mouse chromosome 7. Paternal deletion of a cis-acting differentially methylated DNA element, Kvdmr1, causes coordinate loss of imprinting and over-expression of all of these genes and the resulting conceptuses show intrauterine growth restriction (IUGR). To test the specific contribution of Phlda2 to IUGR in the Kvdmr1-knockout, we crossed Kvdmr1(+/-) males with Phlda2(+/-) females. Conceptuses with the (Phlda2(+/+); Kvdmr1(+/-)) genotype showed fetal and placental growth retardation. Restoration of Phlda2 dosage to normal, as occurred in the conceptuses with the (Phlda2(-/+); Kvdmr1(+/-)) genotype, had a marginally positive effect on fetal weights and no effect on post-natal weights, but significantly rescued the placental weights. As we previously reported, loss of Phlda2 expression in the wild-type background (Phlda2(-/+); Kvdmr1(+/+) genotype) caused placentomegaly. Thus Phlda2 acts as a true rheostat for placental growth, with overgrowth after gene deletion and growth retardation after loss of imprinting. Consistent with this conclusion, we observed significant placental stunting in BAC-transgenic mice that over-expressed Phlda2 and one flanking gene, Slc22a1l, but did not over-express Cdkn1c.  相似文献   

19.
Genomic imprinting is widespread in eutherian mammals. Marsupial mammals also have genomic imprinting, but in fewer loci. It has long been thought that genomic imprinting is somehow related to placentation and/or viviparity in mammals, although neither is restricted to mammals. Most imprinted genes are expressed in the placenta. There is no evidence for genomic imprinting in the egg-laying monotreme mammals, despite their short-lived placenta that transfers nutrients from mother to embryo. Post natal genomic imprinting also occurs, especially in the brain. However, little attention has been paid to the primary source of nutrition in the neonate in all mammals, the mammary gland. Differentially methylated regions (DMRs) play an important role as imprinting control centres in each imprinted region which usually comprises both paternally and maternally expressed genes (PEGs and MEGs). The DMR is established in the male or female germline (the gDMR). Comprehensive comparative genome studies demonstrated that two imprinted regions, PEG10 and IGF2-H19, are conserved in both marsupials and eutherians and that PEG10 and H19 DMRs emerged in the therian ancestor at least 160 Ma, indicating the ancestral origin of genomic imprinting during therian mammal evolution. Importantly, these regions are known to be deeply involved in placental and embryonic growth. It appears that most maternal gDMRs are always associated with imprinting in eutherian mammals, but emerged at differing times during mammalian evolution. Thus, genomic imprinting could evolve from a defence mechanism against transposable elements that depended on DNA methylation established in germ cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号