首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Epidemiological studies have demonstrated that hormonereplacement therapy with estrogen (E2) or E2plus progesterone in postmenopausal women decreases the age-associatedrisk of cardiovascular disease by 30-50%. Treatment of vascularsmooth muscle (VSM) cells with physiological concentrations ofE2 has been shown to inhibit growth factor-stimulated cellproliferation. In this study, we tested the hypothesis thatE2 inhibits the age-associated increase in VSM cellproliferation by inhibiting nuclear factor (NF)-B pathway. Weinvestigated the effects of E2 treatment andadenovirus-mediated estrogen receptor (ER)- gene transfer on cellproliferation and NF-B activation using VSM cells cultured from3-mo-old and 24-mo-old Fischer 344 female rats. Our results demonstratethat VSM cell proliferation was significantly increased(P < 0.05) in aged compared with young adult femalerats. Treatment of VSM cells with physiological concentrations ofE2 inhibited VSM cell proliferation, and this inhibitionwas significantly greater (P < 0.05) in cells from aged female rats compared with young adults. The inhibitory effects ofE2 on cell proliferation in aged female rats weresignificantly potentiated by overexpression of the human ER- geneinto VSM cells. Constitutive and interleukin (IL)-1-stimulatedNF-B activation was significantly greater (P < 0.05) in VSM cells from aged compared with young female rats.E2 treatment of VSM cells from aged female rats inhibitedboth constitutive and IL-1-stimulated NF-B activation. ER-gene transfer into VSM cells from aged female rats further augmentedthe inhibitory effects of E2. In conclusion, our data demonstrate that constitutive and IL-1-stimulated NF-B activation is increased in VSM cells from aged female rats due to loss of E2 and this can be restored back to normal levels by ER-gene transfer and E2 treatment. In addition, increasedNF-B signaling may be responsible for increased incidence ofcardiovascular disease in postmenopausal females.

  相似文献   

2.
Sarcopenia is the age-associated loss of skeletal muscle mass and strength. Recent evidence suggests that an age-associated loss of muscle precursor cell (MPC) functionality contributes to sarcopenia. The objectives of the present study were to examine the influence of activated T cells on MPCs and determine whether an age-related defect in this signaling occurs. MPCs were collected from the gastrocnemius and plantaris of 3-mo-old (young) and 32-mo-old (old) animals. Splenic T cells were harvested using anti-CD3 Dynabead isolation. T cells were activated for 48 h with costimulation of 100 IU/ml interleukin-2 (IL-2) and 5 μg/ml of anti-CD28. Costimulation increased 5-bromo-2'-deoxyuridine incorporation of T cells from 13.4 ± 4.6% in control to 64.8 ± 6.0% in costimulated cells. Additionally, T cell cytokines increased proliferation on MPCs isolated from young muscle by 24.0 ± 5.7%, whereas there was no effect on MPCs isolated from aged muscle. T cell cytokines were also found to be a chemoattractant. T cells were able to promote migration of MPCs isolated from young muscle; however, MPCs isolated from aged muscle did not respond to the T cell-released chemokines. Conversely, whereas T cell-released cytokines did not affect myogenesis of MPCs isolated from young animals, there was a decrease in MPCs isolated from old animals. These data suggest that T cells may play a critical role in mediating MPC function. Furthermore, aging may alter T cell-induced MPC function. These findings have implications for developing strategies aimed at increasing MPC migration and proliferation leading to an improved regenerative capacity of aged skeletal muscle.  相似文献   

3.
Recently, it has been reported that mating can delay the age-associated decline in reproductive function of female rats. Since circulating progesterone (P) levels are elevated for a 2- to 3-wk interval during pregnancy, the following study was conducted to determine whether intermittent elevation in P levels can alter the rate of reproductive aging in female rats. Beginning at 2 mo of age, 4-day-cycling, virgin rats were divided into two groups. In one group, 3 Silastic capsules containing crystalline P were inserted s.c. into each rat while rats in another group each received 1 empty capsule. After 2 wk, the capsules were removed for 2 wk. Thereafter, implantation and removal of capsules was repeated 5 additional times. Rats receiving P capsules became acyclic 3-4 days after exposure to P and resumed cyclicity 4-7 days after removal of P-capsules. One month after the last series of capsules was removed (rats approximately 8-mo-old), rats exhibiting consecutive 4-day cycles were inserted with indwelling atrial cannulae and bled at 4-h intervals from 1400 h on proestrus (Pr) to 1000 h on estrus (E). At 1600 h E, rats were killed and trunk blood was collected. For comparison, a group of 3-mo-old (young) rats was bled on Pr and E. In 8-mo-old rats that received empty capsules, 27% exhibited 4-day cycles compared to 66% of the young rats. However, in contrast to rats that received empty capsules, 63.1% of P-treated rats exhibited 4-day cycles. Surges of preovulatory luteinizing hormone (LH) and follicle-stimulating hormone (FSH) surges were attenuated in 8-mo-old rats given empty capsules compared to young rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is important for tissue proliferation. Previously, we found that tissue regeneration after partial pancreatic resection was markedly attenuated in aged mice as compared to young mice and that this attenuation was because of an age-dependent reduction of PI3K/Akt signaling in the pancreatic acini; however, the mechanisms for the age-associated decline of pancreatic PI3K/Akt signaling remained unknown. To better delineate the mechanisms for the decreased PI3K/Akt activation with aging, age-associated changes in cell proliferation and PI3K/Akt signaling were investigated in the present study using in vitro primary pancreatic acinar cell cultures derived from young and aged mice. In response to treatment with insulin-like growth factor 1 (IGF-1), acinar cells from young but not aged mice showed increased activation of PI3K/Akt signaling and cell proliferation, indicating that intrinsic cellular mechanisms cause the age-associated changes in pancreatic acinar cells. We also found that the expression of PI3K p85α subunit, but not IGF-1 receptor or other PI3K subunits, was significantly reduced in pancreatic acinar cells from aged mice; this age-associated reduction of p85α was confirmed in both mouse and human pancreatic tissues. Finally, small interfering RNA (siRNA)-mediated knockdown of p85α expression in acinar cells from young mice resulted in markedly attenuated activation of PI3K/Akt downstream signaling in response to IGF-1. From these results, we conclude that exocrine pancreatic expression of PI3K p85α subunit is attenuated by aging, which is likely responsible for the age-associated decrease in activation of pancreatic PI3K signaling and acinar cell proliferation in response to growth-promoting stimuli.  相似文献   

5.
Vascular smooth muscle (VSM) cell migration is a critical step in the development of a neointima after angioplasty. Matrix metalloproteinases (MMPs) degrade the basement membrane and extracellular matrix, facilitating VSM cell migration. Recently, we demonstrated that nitric oxide (NO) inhibits interleukin-1 beta (IL-1 beta)-stimulated MMP-9 induction in rat aortic VSM cells. In this study, we examined the hypothesis that NO inhibits MMP-9 induction by attenuating superoxide generation and extracellular signal-regulated kinase (ERK) activation. Stimulation of VSM cells with IL-1 beta significantly (P < 0.05) increased superoxide production, ERK activation, and MMP-9 induction. Pretreatment of VSM cells with the NO donor DETA NONOate significantly (P < 0.05) decreased IL-1 beta-stimulated superoxide generation. In addition, pretreatment of VSM cells with a specific ERK pathway inhibitor, PD-98059, or DETA NONOate inhibited IL-1 beta-stimulated ERK activation and MMP-9 induction. Direct exposure of VSM cells to increased superoxide levels by treatment with xanthine/xanthine oxidase increased ERK activation and MMP-9 induction, whereas pretreatment of cells with PD-98059 significantly (P < 0.05) inhibited xanthine/xanthine oxidase-stimulated ERK activation and MMP-9 induction. We conclude that NO inhibits IL-1 beta-stimulated MMP-9 induction by inhibiting superoxide generation and subsequent ERK activation.  相似文献   

6.
One of the key factors responsible for the age-associated reduction in muscle mass may be that satellite cell proliferation potential (number of doublings contained within each cell) could become rate limiting to old muscle regrowth. No studies have tested whether repeated cycles of atrophy-regrowth in aged animals deplete the remaining capacity of satellite cells to replicate or what measures can be taken to prevent this from happening. We hypothesized that there would be a pronounced loss of satellite cell proliferative potential in gastrocnemius muscles of aged rats (25- to 30-mo-old FBN rats) subjected to three cycles of atrophy by hindlimb immobilization (plaster casts) with intervening recovery periods. Our results indicated that there was a significant loss in gastrocnemius muscle mass and in the proliferative potential of the resident satellite cells after just one bout of immobilization. Neither the muscle mass nor the satellite cell proliferation potential recovered from their atrophied values after either the first 3-wk or later 9-wk recovery period. Remarkably, application of insulin-like growth factor I onto the atrophied gastrocnemius muscle for an additional 2 wk after this 9-wk recovery period rescued approximately 46% of the lost muscle mass and dramatically increased proliferation potential of the satellite cells from this muscle.  相似文献   

7.
Previous studies have shown that the aging vascular system undergoes pro-atherogenic phenotypic changes, including increased oxidative stress and a pro-inflammatory shift in endothelial gene expression profile. To elucidate the link between increased oxidative stress and vascular inflammation in aging, we compared the carotid arteries and aortas of young and aged (24 mo old) Fisher 344 rats. In aged vessels there was an increased NF-kappaB activity (assessed by luciferase reporter gene assay and NF-kappaB binding assay), which was attenuated by scavenging H(2)O(2). Aging did not alter the vascular mRNA and protein expression of p65 and p50 subunits of NF-kappaB. In endothelial cells of aged vessels there was an increased production of H(2)O(2) (assessed by 5,6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate-acetyl ester fluorescence), which was attenuated by the mitochondrial uncoupler FCCP. In young arteries and cultured endothelial cells, antimycin A plus succinate significantly increased FCCP-sensitive mitochondrial H(2)O(2) generation, which was associated with activation of NF-kappaB. In aged vessels inhibition of NF-kappaB (by pyrrolidenedithiocarbamate, resveratrol) significantly attenuated inflammatory gene expression and inhibited monocyte adhesiveness. Thus increased mitochondrial oxidative stress contributes to endothelial NF-kappaB activation, which contributes to the pro-inflammatory phenotypic alterations in the aged vaculature. Our model predicts that by reducing mitochondrial H(2)O(2) production and/or directly inhibiting NF-kappaB novel anti-aging pharmacological treatments (e.g., calorie restriction mimetics) will exert significant anti-inflammatory and vasoprotective effects.  相似文献   

8.

Background

The coincidence of vascular smooth muscle cells (VSMC) infiltration and collagen deposition within a diffusely thickened intima is a salient feature of central arterial wall inflammation that accompanies advancing age. However, the molecular mechanisms involved remain undefined.

Methodology/Principal Findings

Immunostaining and immunoblotting of rat aortae demonstrate that a triad of proinflammatory molecules, MCP-1, TGF-β1, and MMP-2 increases within the aortic wall with aging. Exposure of VSMC isolated from 8-mo-old rats (young) to MCP-1 effects, via CCR-2 signaling, both an increase in TGF-β1 activity, up to levels of untreated VSMC from 30-mo-old (old) rats, and a concurrent increase in MMP-2 activation. Furthermore, exposure of young VSMC to TGF-β1 increases levels of MCP-1, and MMP-2 activation, to levels of untreated VSMC from old rats. This autocatalytic signaling loop that enhances collagen production and invasiveness of VSMC is effectively suppressed by si-MCP-1, a CCR2 antagonist, or MMP-2 inhibition.

Conclusions/Significance

Threshold levels of MCP-1, MMP-2, or TGF-β1 activity trigger a feed-forward signaling mechanism that is implicated in the initiation and progression of adverse age-associated arterial wall remodeling. Intervention that suppressed this signaling loop may potentially retard age-associated adverse arterial remodeling.  相似文献   

9.
Cyclooxygenase-2 (COX-2) expression is mediated by constitutive NF-kappaB and regulates human gastric cancer cell growth and proliferation. Inactivating Ku70 or Ku80 suppresses cell growth and induces apoptosis. It has been hypothesized that Ku70 and Ku80 expression may be associated with NF-kappaB activation and COX-2 expression and is involved in cell proliferation. In this study, we found that inhibition of constitutive NF-kappaB (by transfecting a mutated IkappaBalpha gene) and of COX-2 (by treatment with indomethacin and NS-398) suppressed Ku70 and Ku80 expression in cells. Treatment with prostaglandin E(2) adenocarcinoma gastric (AGS) increased expression of these Ku proteins in cells with low constitutive NF-kappaB levels. Inhibition of the Ku DNA end-binding activity by transfection with the C-terminal Ku80 expression gene suppressed cell proliferation. Ku70 or Ku80 overexpression by transfection with the Ku70 or Ku80 expression gene, respectively, enhanced proliferation of cells with low NF-kappaB levels. These results demonstrate that Ku70 and Ku80 expression is mediated by constitutively activated NF-kappaB and constitutively expressed COX-2 in gastric cancer cells and that the high Ku DNA end-binding activity contributes to cell proliferation. Ku70 and Ku80 expression may be related to gastric cell proliferation and carcinogenesis.  相似文献   

10.
Age-associated decrease in muscle precursor cell differentiation   总被引:2,自引:0,他引:2  
Muscle precursor cells (MPCs) are required for the regrowth, regeneration, and/or hypertrophy of skeletal muscle, which are deficient in sarcopenia. In the present investigation, we have addressed the issue of age-associated changes in MPC differentiation. MPCs, including satellite cells, were isolated from both young and old rat skeletal muscle with a high degree of myogenic purity (>90% MyoD and desmin positive). MPCs isolated from skeletal muscle of 32-mo-old rats exhibited decreased differentiation into myotubes and demonstrated decreased myosin heavy chain (MHC) and muscle creatine kinase (CK-M) expression compared with MPCs isolated from 3-mo-old rats. p27Kip1 is a cyclin-dependent kinase inhibitor that has been shown to enhance muscle differentiation in culture. Herein we describe our finding that p27Kip1 protein was lower in differentiating MPCs from skeletal muscle of 32-mo-old rats than in 3-mo-old rat skeletal muscle. Although MHC and CK-M expression were 50% lower in differentiating MPCs isolated from 32-mo-old rats, MyoD protein content was not different and myogenin protein concentration was twofold higher. These data suggest that there are inherent differences in cell signaling during the transition from cell cycle arrest to the formation of myotubes in MPCs isolated from sarcopenic muscle. Furthermore, there is an age-associated decrease in muscle-specific protein expression in differentiating MPCs despite normal MyoD and elevated myogenin levels. satellite cells; skeletal muscle; p27Kip1; myogenic regulatory factors  相似文献   

11.
We investigated the effects of aging on Sertoli cell-germ cell interactions from Brown Norway rats using the induction of four specific mRNAs as markers. The testes from aging (24 mo old) Brown Norway rats can be normal size or regressed. One marker, a von Ebner's-like protein, is expressed in coculture and "in vivo" in germ cells from normal testes of 6- and 24-mo-old rats but not in germ cells from regressed testes of 24-mo-old rats. A second germ cell marker, the Huntington disease protein, is expressed in all germ cells. Two Sertoli cell markers, a serotonin receptor and a novel gene, are induced in Sertoli cells by meiotic germ cells. The serotonin receptor mRNA is expressed in Sertoli cells from 20-day, 6-mo, and 24-mo normal testes but not in those from 24-mo regressed testes. The novel gene is induced in Sertoli cells from all testes. We conclude that Sertoli cells from aged regressed testes are unable to respond to selective signals from germ cells from young rats, and germ cells from regressed testes show a similar selective loss. Such disruptions in communication between Sertoli cells and germ cells likely contribute to germ cell loss during aging.  相似文献   

12.
Numerous changes have been reported to occur in T cell responsiveness of mice with increasing age. However, most of these studies have examined polyclonal stimulation of spleen cells from a limited number of mouse strains. This study investigated the influence of genetic background, source of lymphocytes, and type of stimulus on age-associated changes in T cells response. Con A-induced proliferation and IL-2 and IFN-gamma production by splenic lymphocytes (SL) was significantly greater in CBA/Ca mice compared to C57BL/6 mice, regardless of age. SL of both strains exhibited the predicted age-dependent decline in proliferative response and an increase in IFN-gamma production in response to Con A. In contrast, however, only SL from C57BL/6 mice demonstrated the predicted age-dependent decline in Con A-induced IL-2 production; Con A-induced SL of young and aged CBA/Ca mice produced comparable amounts of IL-2. Differences in age-associated responses to Con A were also observed between SL and inguinal lymph node (ILN) cells of CBA/Ca mice. In contrast to SL, ILN cells demonstrated an increased proliferative response to Con A. However, lymphokine production by Con A-stimulated ILN cells from aged CBA/Ca mice was similar to that of Con A-stimulated SL from aged CBA/Ca mice. To determine if aged ILN T cells respond similarly to polyclonal and antigen-specific stimuli, keyhole limpet hemocyanin (KLH) responses of T cells isolated from ILN of aged and young CBA/Ca mice were examined. KLH-specific T cells from aged mice cultured with KLH-pulsed macrophages (M phi) from aged mice were significantly reduced in their ability to proliferate compared to KLH-specific T cells of young mice cultured with young KLH-pulsed M phi. In contrast to the expected results, the defect was not at the level of the T cells; proliferation of young T cells cultured with aged KLH-pulsed M phi was equivalent to the proliferation of aged T cells cultured with aged M phi. These results suggest that aging has differential effects on polyclonal and antigen-specific T cell proliferation and on polyclonal stimulation of T cells isolated from different lymphoid organs and from different strains of mice.  相似文献   

13.
In young adult females, estrogen treatment suppresses the cerebrovascular inflammatory response; this is mediated in part via NF-kappaB, a key regulator of inflammatory genes. To examine whether age modifies effects of estrogen on vascular inflammation in the brain, female rats, 3 and 12 mo of age, were ovariectomized; half were treated with estrogen for 4 wk. Cerebral blood vessels were isolated from the animals at 4 and 13 mo of age. Inflammation was induced by LPS, either injected in vivo or incubated with isolated vessels ex vivo. Basal levels of cytoplasmic NF-kappaB were significantly higher in cerebral vessels of young rats, but the ratio of nuclear to cytoplasmic levels was greater in middle-aged animals. LPS exposure increased nuclear NF-kappaB DNA binding activity, protein levels of inducible nitric oxide synthase and cyclooxygenase-2, and production of nitric oxide and PGE(2) in cerebral vessels. All effects of LPS were markedly greater in vessels from the older animals. Estrogen significantly inhibited the LPS-induced increase in NF-kappaB DNA binding activity in cerebral vessels from animals at both ages. In 4-mo-old rats, estrogen also significantly suppressed LPS induction of inducible nitric oxide synthase and cyclooxygenase-2 proteins, as well as production of nitric oxide and PGE(2). In contrast, in 13-mo-old females, estrogen did not significantly affect these indexes of cerebrovascular inflammation. Thus the protective, anti-inflammatory effect of estrogen on cerebral blood vessels that is observed in young adults may be attenuated in aged animals, which exhibit a greater overall cerebrovascular response to inflammatory stimuli.  相似文献   

14.
CD4+T cells from aged humans or mice show significant reductions in IL-2 production upon activation. The resulting decreased proliferation is linked to higher risks of infection in the elderly. Several lines of evidence indicate that intrinsic defects preferentially affecting the naïve subset of CD4+T cells contribute to this reduced IL-2 production. Comparison of the biochemical pathways that transduce activation signals from the T cell receptor to the IL-2 promoter in young and old CD4+T cells has demonstrated age-related impairments at initial molecular events, in particular the phosphorylation of kinases and adapter proteins involved in the formation of signalosomes - complex multiprotein assemblies that provide the framework for effective signal transduction. Confocal microscopy has demonstrated a series of age-related impairments in effective immune synapse formation. Vitamin E can reverse many of these CD4+T cell age-associated defects, including reduced levels of phosphorylation of critical signaling/adapter proteins as well as defective immune synapse formation. Vitamin E also enhances IL-2 production, expression of several cell cycle control proteins, and proliferation. Although the precise mechanisms underlying this effect are not understood, it is possible that this antioxidant lipophilic vitamin can prevent the propagation of polyunsaturated fatty acid peroxidation in the cell membrane, influence the biochemical characteristics of specific lipid bilayer microdomains involved in signal transduction, modulate the activity of kinases/phosphatases, or interact with intracellular receptors.  相似文献   

15.
《FEBS letters》2014,588(24):4708-4719
Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levels and impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo.  相似文献   

16.
17.
Aging is associated with hypertrophy, dilatation, and fibrosis of the left ventricle (LV) of the heart. Advances in echocardiographic assessment have made it possible to follow changes in cardiac function in a serial, noninvasive manner. The purpose was to determine whether there is echocardiographic evidence of age-associated changes in chamber dimensions and systolic and diastolic properties of the female Fischer 344 (F344) rat heart. On the basis of previous invasive studies, it was predicted that echocardiographic assessment would detect age-associated changes in indexes of systolic and diastolic function. Rats were sedated with 1.5% isoflurane and placed in the supine position. Two-dimensional images and two-dimensionally guided M-mode, Doppler M mode, Doppler tissue, and pulsed-wave Doppler recordings were obtained from the parasternal long axis, parasternal short axis, and/or apical four-chamber views as per convention by using a 15-MHz linear array or 8-MHz phased-array transducer or a GE S10-MHz phased-array transducer. Compared with young adult 4-mo-old rats, there is a significant decrement in the resting systolic function of the LV in 30-mo-old female F344 rats as evidenced by declines in LV ejection fraction (80 +/- 9 vs. 89 +/- 5%; mean +/- SD), fractional shortening (43 +/- 9 vs. 54 +/- 8%) and velocity of circumferential fiber shortening (2.43 +/- 0.53 vs. 2.99 +/- 0.50 circ/s). Evidence for age-associated differences in diastolic function included an increase in isovolumic relaxation time (25.0 +/- 7.6 vs. 17.2 +/- 4.4 ms) and decreases in the tissue Doppler peak E waves at the septal annulus and at the lateral annulus of the mitral valve. The modest changes in systolic and diastolic LV function that occur with advancing age in the female F344 rat are likely to reduce the capacity of the heart to respond to hemodynamic challenges.  相似文献   

18.
19.
Interleukin-1 (IL-1) plays a crucial role in the immunopathological responses involved with tissue destruction in chronic inflammatory diseases, such as periodontal disease, as it stimulates host cells including fibroblasts to produce various inflammatory mediators and catabolic factors. We comprehensively investigated the involvement of mitogen-activated protein kinases (MAPKs)/activator protein-1 (AP-1) and IkappaB kinases (IKKs)/IkappaBs/nuclear factor-kappaB (NF-kappaB) in IL-1beta-stimulated IL-6, IL-8, prostaglandin E(2) (PGE(2)) and matrix metalloproteinase-1 (MMP-1) production by human gingival fibroblasts (HGF). Three MAPKs, extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK), which were simultaneously activated by IL-1beta, mediated subsequent c-fos and c-jun mRNA expression and DNA binding of AP-1 at different magnitudes. IKKalpha/beta/IkappaB-alpha/NF-kappaB was also involved in the IL-1 signaling cascade. Further, IL-1beta stimulated HGF to produce IL-6, IL-8, PGE(2) and MMP-1 via activation of the 3 MAPKs and NF-kappaB, as inhibitors of each MAPK and NF-kappaB significantly suppressed the production of IL-1beta-stimulated factors, though these pathways might also play distinct roles in IL-1beta activities. Our results strongly suggest that the MAPKs/AP-1 and IKK/IkappaB/NF-kappaB cascades cooperatively mediate the IL-1beta-stimulated synthesis of IL-6, IL-8, PGE(2) and MMP-1 in HGF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号