首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the family Geobacteraceae are commonly the predominant Fe(III)-reducing microorganisms in sedimentary environments, as well as on the surface of energy-harvesting electrodes, and are able to effectively couple the oxidation of acetate to the reduction of external electron acceptors. Citrate synthase activity of these organisms is of interest due to its key role in acetate metabolism. Prior sequencing of the genome of Geobacter sulfurreducens revealed a putative citrate synthase sequence related to the citrate synthases of eukaryotes. All citrate synthase activity in G. sulfurreducens could be resolved to a single 49-kDa protein via affinity chromatography. The enzyme was successfully expressed at high levels in Escherichia coli with similar properties as the native enzyme, and kinetic parameters were comparable to related citrate synthases (kcat= 8.3 s(-1); Km= 14.1 and 4.3 microM for acetyl coenzyme A and oxaloacetate, respectively). The enzyme was dimeric and was slightly inhibited by ATP (Ki= 1.9 mM for acetyl coenzyme A), which is a known inhibitor for many eukaryotic, dimeric citrate synthases. NADH, an allosteric inhibitor of prokaryotic hexameric citrate synthases, did not affect enzyme activity. Unlike most prokaryotic dimeric citrate synthases, the enzyme did not have any methylcitrate synthase activity. A unique feature of the enzyme, in contrast to citrate synthases from both eukaryotes and prokaryotes, was a lack of stimulation by K+ ions. Similar citrate synthase sequences were detected in a diversity of other Geobacteraceae members. This first characterization of a eukaryotic-like citrate synthase from a prokaryote provides new insight into acetate metabolism in Geobacteraceae members and suggests a molecular target for tracking the presence and activity of these organisms in the environment.  相似文献   

2.
The citrate synthases of the gram-negative bacteria, Escherichia coli and Acinetobacter anitratum, are allosterically inhibited by NADH. The kinetic properties, however, suggest that the equilibrium between active (R) and inactive (T) conformational states is shifted toward the T state in the E. coli enzyme. We have now manipulated the cloned genes for the two bacterial enzymes to produce two chimeric proteins, in which one folding domain of each subunit is derived from each enzyme. One chimera (the large domain from A. anitratum and the small domain from the E. coli enzyme) is designated CS ACI::eco; the other is called CS ECO::aci. Both chimeras are roughly as active as the wild type parents, but their Km values for both substrates are lower than those for the E. coli enzyme, and NADH inhibition is markedly sigmoid, while that for E. coli citrate synthases is hyperbolic. Curve-fitting to the allosteric equation suggests that these differences are the result of the destabilization of the T state in the chimeras. The ACI::eco chimera exists almost entirely as a hexamer, like the A. anitratum enzyme, while the ECO::aci chimera, like the E. coli synthase, forms three major bands on nondenaturing polyacrylamide gels, two of them hexamers of different net charge, and one a dimer. These findings indicate that subunit interactions leading to hexamer formation in allosteric citrate synthases of gram-negative bacteria involve mainly the large domains. The chimeras are also used to show that the NADH binding site of E. coli citrate synthase is located entirely in the large domain. Sensitivity of the chimeras to denaturation by urea, to which the A. anitratum enzyme is much more resistant than the E. coli enzyme, is determined by the large domains. Sensitivity to inactivation by subtilisin is intermediate between those shown by the E. coli (very sensitive) and A. anitratum (quite resistant) synthases. This result suggests that digestibility by subtilisin is determined by conformational factors as well as the amino acid sequences of the target regions.  相似文献   

3.
Members of the family Geobacteraceae are commonly the predominant Fe(III)-reducing microorganisms in sedimentary environments, as well as on the surface of energy-harvesting electrodes, and are able to effectively couple the oxidation of acetate to the reduction of external electron acceptors. Citrate synthase activity of these organisms is of interest due to its key role in acetate metabolism. Prior sequencing of the genome of Geobacter sulfurreducens revealed a putative citrate synthase sequence related to the citrate synthases of eukaryotes. All citrate synthase activity in G. sulfurreducens could be resolved to a single 49-kDa protein via affinity chromatography. The enzyme was successfully expressed at high levels in Escherichia coli with similar properties as the native enzyme, and kinetic parameters were comparable to related citrate synthases (kcat = 8.3 s−1; Km = 14.1 and 4.3 μM for acetyl coenzyme A and oxaloacetate, respectively). The enzyme was dimeric and was slightly inhibited by ATP (Ki = 1.9 mM for acetyl coenzyme A), which is a known inhibitor for many eukaryotic, dimeric citrate synthases. NADH, an allosteric inhibitor of prokaryotic hexameric citrate synthases, did not affect enzyme activity. Unlike most prokaryotic dimeric citrate synthases, the enzyme did not have any methylcitrate synthase activity. A unique feature of the enzyme, in contrast to citrate synthases from both eukaryotes and prokaryotes, was a lack of stimulation by K+ ions. Similar citrate synthase sequences were detected in a diversity of other Geobacteraceae members. This first characterization of a eukaryotic-like citrate synthase from a prokaryote provides new insight into acetate metabolism in Geobacteraceae members and suggests a molecular target for tracking the presence and activity of these organisms in the environment.  相似文献   

4.
Citrate synthase has been purified to homogeneity from a strain of the Gram-negative aerobic bacterium Acinetobacter anitratum in a form which retains its sensitivity to the allosteric inhibitor NADH. In subunit size, amino acid composition, and antigenic reactivity the enzyme shows a marked structural resemblance to the citrate synthase of the Gram-negative facultative anaerobe Escherichia coli. Whereas the E. coli enzyme is subject to a strong, hyperbolic inhibition by NADH (Hill's number n = 1.0, Ki = 2 microM), the A. anitratum enzyme shows a weak, sigmoid response (n = 1.6, I0.5 = 140 microM) to this nucleotide. With E. coli, NADH inhibition is competitive with acetyl-CoA, and noncompetitive with oxaloacetate; with A. anitratum, NADH is noncompetitive with both substrates. Acinetobacter anitratum citrate synthase shows hyperbolic saturation with acetyl-CoA (n = 1.8). The finding of Weitzman and Jones (Nature (London) 219, 270 (1968) that NADH inhibition of the enzyme from Acinetobacter spp. is reversible by AMP, while that from E. coli is not, is explained by the much greater affinity of the E. coli enzyme for NADH. Unlike E. coli citrate synthase, the A. anitratum enzyme does not react with the sulfhydryl reagent 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the absence of denaturation. With a second sulfhydryl reagent, 4,4'-dithiodipyridine (4,4'-PDS), the A. anitratum enzyme reacts with 1 equiv. of subunit; this modification induces a partial activity loss (attributable to a arise in the Km for acetyl-CoA) and an increase in the sensitivity to NADH. With the E. coli enzyme, 4,4'-PDS causes complete inactivation. Acinetobacter anitratum citrate synthase is much more resistant to urea denaturation than the E. coli enzyme is; the resistance of both enzymes to urea is greatly improved in the presence of 1 M KCl. It is suggested that the amino acid sequences of the subunits of the citrate synthases of these two bacteria are about 90% homologous, and that the 10% differences are in key residues, perhaps largely in the subunit contact regions, which account for the differences in allosteric properties.  相似文献   

5.
The sequence of 1895 base pairs of Acinetobacter anitratum genomic DNA, containing the structural gene for the allosteric citrate synthase of that Gram-negative bacterium, is presented. The sequence contains an open reading frame of 424 codons, the 5' end of which is the same as the N-terminal sequence of A. anitratum citrate synthase, less the initiator methionine. The inferred amino acid sequence of the enzyme is about 70% identical with that of citrate synthase from Escherichia coli, which like the A. anitratum enzyme is sensitive to allosteric inhibition by NADH. There is also a more distant homology with the nonallosteric citrate synthases of pig heart and yeast. The gene contains sequences that strongly resemble those found in E. coli promoters, an E. coli type of ribosomal binding site, and a hyphenated dyad sequence at the 3' end of the gene which resembles the rho-independent terminators found in some E. coli genes. The plasmid clone containing the A. anitratum citrate synthase gene pLJD1, originally isolated because it hybridized with the cloned E. coli citrate synthase gene under conditions of reduced stringency, produces large amounts of A. anitratum citrate synthase in an E. coli host which lacks citrate synthase. This work completes proof of the hypothesis that the three major kinds of citrate synthases are formed of similar subunits, although their functional properties are different.  相似文献   

6.
Citrate synthase from Escherichia coli enhances the fluorescence of its allosteric inhibitor, NADH, and shifts the peak of emission of the coenzyme from 457 to 428 nm. These effects have been used to measure the binding of NADH to this enzyme under various conditions. The dissociation constant for the NADH-citrate synthase complex is about 0.28 muM at pH 6.2, but increases toward alkaline pH as if binding depends on protonation of a group with a pKa of about 7.05. Over the pH range 6.2-8.7, the number of binding sites decreases from about 0.65 to about 0.25 per citrate synthase subunit. The midpoint of this transition is at about pH 7.7, and it may be one reflection of the partial depolymerization of the enzyme which is known to occur in this pH range. A gel filtration method has been used to verify that the fluorescence enhancement technique accurately reveals all of the NADH molecules bound to the enzyme in the concentration range of interest. NAD+ and NADP+ were weak competitive inhibitors of NADH binding at pH 7.8 (Ki values greater than 1 mM), but stronger inhibition was shown by 5'-AMP and 3'-AMP, with Ki values of 83 +/- 5 and 65 +/- 4 muM, respectively. Acetyl-CoA, one of the substrates, and KCl, an activator, also inhibit the binding in a weakly cooperative manner. All of these effects are consistent with kinetic observations on this system. We interpret our results in terms of two types of binding site for nucleotides on citrate synthase: an active site which binds acetyl-CoA, the substrate, or its analogue 3'-AMP; and an allosteric site which binds NADH or its analogue 5'-AMP and has a lesser affinity for other nicotinamide adenine dinucloetides. When the active site is occupied, we propose that NADH cannot bind to the allosteric site, but 5'-AMP can; conversely, when NADH is the in the allosteric site, the active site cannot be occupied. In addition to these two classes of sites, there must be points for interaction with KCl and other salts. Oxaloacetate, the second substrate, and alpha-ketoglutarate, an inhibitor whose mode of action is believed to be allosteric, have no effect on NADH binding to citrate synthase at pH 7.8. When NADH is bound to citrate synthase, it quenches the intrinsic tryptophan fluorescence of the enzyme. The amount of quenching is proportional to the amount of NADH bound, at least up to a binding ratio of 0.50 NADH per enzyme subunit. This amount of binding leads to the quenching of 53 +/- 5% of the enzyme fluorescence, which means that one NADH molecule can quench all the intrinsic fluorescence of the subunit to which it binds.  相似文献   

7.
We describe the first structure determination of a type II citrate synthase, an enzyme uniquely found in Gram-negative bacteria. Such enzymes are hexameric and are strongly and specifically inhibited by NADH through an allosteric mechanism. This is in contrast to the widespread dimeric type I citrate synthases found in other organisms, which do not show allosteric properties. Our structure of the hexameric type II citrate synthase from Escherichia coli is composed of three identical dimer units arranged about a central 3-fold axis. The interactions that lead to hexamer formation are concentrated in a relatively small region composed of helix F, FG and IJ helical turns, and a seven-residue loop between helices J and K. This latter loop is present only in type II citrate synthase sequences. Running through the middle of the hexamer complex, and along the 3-fold axis relating dimer units, is a remarkable pore lined with 18 cationic residues and an associated hydrogen-bonded network. Also unexpected was the observation of a novel N-terminal domain, formed by the collective interactions of the first 52 residues from the two subunits of each dimer. The domain formed is rich in beta-sheet structure and has no counterpart in previous structural studies of type I citrate synthases. This domain is located well away from the dimer-dimer contacts that form the hexamer, and it is not involved in hexamer formation. Another surprising observation from the structure of type II E. coli citrate synthase is the unusual polypeptide chain folding found at the putative acetylcoenzyme A binding site. Key parts of this region, including His264 and a portion of polypeptide chain known from type I structures to form an adenine binding loop (residues 299-303), are shifted by as much as 10 A from where they must be for substrate binding and catalysis to occur. Furthermore, the adjacent polypeptide chain composed of residues 267-297 is extremely mobile in our structure. Thus, acetylcoenzyme A binding to type II E. coli citrate synthase would require substantial structural shifts and a concerted refolding of the polypeptide chain to form an appropriate binding subsite. We propose that this essential rearrangement of the acetylcoenzyme A binding part of the active site is also a major feature of allostery in type II citrate synthases. Overall, this study suggests that the evolutionary development of hexameric association, the elaboration of a novel N-terminal domain, introduction of a NADH binding site, and the need to refold a key substrate binding site are all elements that have been developed to allow for the allosteric control of catalysis in the type II citrate synthases.  相似文献   

8.
Abstract Gram-negative methylotrophs contain a high- M r'large' citrate synthase. Gram-positive methylotrophs, on the other hand, contain a 'small' citrate synthase. These differences in M r coincided partly with differences in NADH sensitivity. Citrate synthases from obligate Gram-negative and Gram-positive facultative methylotrophs were insensitive to feedback inhibition by NADH; only the enzymes from Gram-negative facultative methylotrophs were inhibited by NADH.  相似文献   

9.
In vitro mutagenesis techniques have been used to investigate two structure-function questions relating to the allosteric citrate synthase of Escherichia coli. The first question concerns the binding site of alpha-keto-glutarate, which is a structural analogue of the substrate oxaloacetate and yet has been suggested to be an allosteric inhibitor of the enzyme. Using oligonucleotide-directed mutagenesis of the cloned E. coli citrate synthase gene, we prepared missense mutants, designated CS226H----Q and CS229H----Q, in which histidine residues at positions 226 and 229, respectively, were replaced by glutamine. In the homologous pig heart citrate synthase it is known (Wiegand, G., and Remington, S. J. (1986) Annu. Rev. Biophys. Biophys. Chem. 15, 97-117) that the equivalent of His-229 helps to bind oxaloacetate, while the equivalent of His-226 is nearby. Kinetic and ligand binding measurements showed that CS226H----Q had a reduced affinity for oxaloacetate and alpha-ketoglutarate, while CS229H----Q bound oxaloacetate even less effectively, and was not inhibited by alpha-ketoglutarate at all under our conditions. This parallel loss of binding affinities for oxaloacetate and alpha-ketoglutarate, in two mutants altered in residues at the active site of E. coli citrate synthase, strongly suggests that inhibition of this enzyme by alpha-ketoglutarate is not allosteric but occurs by competitive inhibition at the active site. The second question investigated was whether the known inhibition by acetyl-CoA of binding of NADH, an allosteric inhibitor of E. coli citrate synthase, occurs heterotropically, as an indirect result of acetyl-CoA binding at the active site, or directly, by competition at the allosteric NADH binding site. Using existing restriction sites in the cloned E. coli citrate synthase gene, we prepared a deletion mutant which lacked 24 amino acids near what is predicted to the acetyl-CoA-binding portion of the active site. The mutant protein was inactive, and acetyl-CoA did not bind to the active site but still inhibited NADH binding. Thus acetyl-CoA can interact with both the allosteric and the active sites of this enzyme.  相似文献   

10.
Preincubation in assay mixture for 30 min at 37 degrees C of ATP citrate lyase from rat brain and liver results in 65-70% inhibition in the presence of 10 mM L-glutamate. This inhibition is specific since none of the known brain metabolites of glutamate shows this effect. ATP and ammonium sulphate-suspended, commercially purified malate dehydrogenase are both important in the generation of inhibition; citrate and NADH are not. The ATP citrate lyase activity in desalted crude extracts and 11% polyethylene glycol-precipitated fractions is inhibited but the enzyme purified by dye affinity chromatography is unaffected. Such purification reveals the presence of a factor responsible for the generation of the inhibition shown to be of Mr 380,000. These lines of evidence implicate endogenous glutamine synthetase, and the involvement of this enzyme is established by the use of its inhibitor L-methionine sulphoximine and by the addition of purified glutamine synthetase to restore the glutamate inhibition of purified ATP citrate lyase. The phenomenon probably arises from the production by glutamine synthetase of ADP, a known product inhibitor of ATP citrate lyase. Therefore contrary to previous reports elsewhere, L-glutamate has no role in the regulation of brain ATP citrate lyase and thus the supply of cytoplasmic acetyl groups for biosynthesis.  相似文献   

11.
Li Y  Rivera D  Ru W  Gunasekera D  Kemp RG 《Biochemistry》1999,38(49):16407-16412
Earlier studies indicated an evolutionary relationship between bacterial and mammalian phosphofructo-1-kinases (PFKs) that suggests duplication, tandem fusion, and divergence of catalytic and effector binding sites of a prokaryotic ancestor to yield in eukaryotes a total of six organic ligand binding sites. The identities of residues involved in the four binding sites for allosteric ligands in mammalian PFK have been inferred from this assumed relationship. In the current study of the C isozyme of rabbit PFK, two arginine residues that can be aligned with important residues in the catalytic and allosteric binding sites of bacterial PFK and that are conserved in all eukaryotic PFKs were mutated. Arg-48 was suggested previously to be part of either the ATP inhibitory or the adenine nucleotide activating site. However, the mutant enzyme showed only slightly less sensitivity to ATP inhibition and was fully activatable by adenine nucleotides. On the other hand, sensitivity to citrate and 3-phosphoglycerate inhibition was lost, indicating an important role for Arg-48 in the binding of these allosteric effectors. Mutation of Arg-481, homologous to an active site residue in bacterial PFK, prevented binding and allosteric activation by fructose 2,6-bisphosphate. A new relationship between the allosteric sites of mammalian PFK and bacterial PFK is proposed.  相似文献   

12.
1. A purification of l(+)-lactate dehydrogenase is described. 2. The final preparation is active with NADH and NADPH and with a number of keto acids, but evidence is presented to support the view that a single enzyme is involved. 3. NAD(+) showed product inhibition, but at slightly acid pH values there was evidence of co-operative binding. 4. At acid pH values ATP was a potent inhibitor and appears to be an allosteric effector. At neutral or alkaline pH values ATP behaved as a weak competitive inhibitor. 5. The physiological significance of inhibition by ATP is discussed.  相似文献   

13.
Lactate dehydrogenase in Phycomyces blakesleeanus.   总被引:1,自引:1,他引:0       下载免费PDF全文
1. An NAD-specific L(+)-lactate dehydrogenase (EC 1.1.1.27) from the mycelium of Phycomyces blakesleeanus N.R.R.L. 1555 (-) was purified approximately 700-fold. The enzyme has a molecular weight of 135,000-140,000. The purified enzyme gave a single, catalytically active, protein band after polyacrylamide-gel electrophoresis. It shows optimum activity between pH 6.7 and 7.5. 2. The Phycomyces blakesleeanus lactate dehydrogenase exhibits homotropic interactions with its substrate, pyruvate, and its coenzyme, NADH, at pH 7.5, indicating the existence of multiple binding sites in the enzyme for these ligands. 3. At pH 6.0, the enzyme shows high substrate inhibition by pyruvate. 3-hydroxypyruvate and 2-oxovalerate exhibit an analogous effect, whereas glyoxylate does not, when tested as substrates at the same pH. 4. At pH 7.5, ATP, which inhibits the enzyme, acts competitively with NADH and pyruvate, whereas at pH 6.0 and low concentrations of ATP it behaves in a allosteric manner as inhibitor with respect to NADH, GTP, however, has no effect under the same experimental conditions. 5. Partially purified enzyme from sporangiophores behaves in entirely similar kinetic manner as the one exhibited by the enzyme from mycelium.  相似文献   

14.
Commonly the TCA cycle fulfils an anabolic and a catabolic function in case of aerobic chemoorganoheterotrophic nutrition. In methylotrophic growth the TCA cycle is dispensable as a bioenergetic pathway. This is reflected by properties of citrate synthase in facultative methylotrophic bacteria. Two citrate synthases, a "chemoorganoheterotrophic" one, which is inhibited by NADH (or ATP in Acetobacter MB 58), and a "methylotrophic" one, which is not or less affected by energy indicators, were found in Pseudomonas oleovorans, Pseudomonas MS, Pseudomonas MA, and Acetobacter MB 58. The concentration of these citrate synthases depends on the manner of nutrition. Bacteria with ICL-negative-variant of the serine pathway and with ribulosebisphosphate pathway seem to possess only a "chemoorganoheterotrophic" citrate synthase. Possibly the anabolic function of this citrate synthase can be realized by metabolites.  相似文献   

15.
Summary d(-)-lactate dehydrogenase from hybrid male strain of Allomyces has been partially purified.The enzyme shows multiple binding sites for NADH. It obeys Michaelis-Menten kinetics for pyruvate. The inhibition of the enzyme activity by ATP is of mixed type. ADP is not an allosteric inhibitor of the enzyme. AMP and cyclic 3,5-AMP do not affect the enzyme. NAD+ acts as a product inhibitor.  相似文献   

16.
Azotobacter beijerinckii possesses the enzymes of both the Entner-Doudoroff and the oxidative pentose phosphate cycle pathways of glucose catabolism and both pathways are subject to feedback inhibition by products of glucose oxidation. The allosteric glucose 6-phosphate dehydrogenase utilizes both NADP(+) and NAD(+) as electron acceptors and is inhibited by ATP, ADP, NADH and NADPH. 6-Phosphogluconate dehydrogenase (NADP-specific) is unaffected by adenosine nucleotides but is strongly inhibited by NADH and NADPH. The formation of pyruvate and glyceraldehyde 3-phosphate from 6-phosphogluconate by the action of the Entner-Doudoroff enzymes is inhibited by ATP, citrate, isocitrate and cis-aconitate. Glyceraldehyde 3-phosphate dehydrogenase is unaffected by adenosine and nicotinamide nucleotides but the enzyme is non-specific with respect to NADP and NAD. Citrate synthase is strongly inhibited by NADH and the inhibition is reversed by the addition of AMP. Isocitrate dehydrogenase, a highly active NADP-specific enzyme, is inhibited by NADPH, NADH, ATP and by high concentrations of NADP(+). These findings are discussed in relation to the massive synthesis of poly-beta-hydroxybutyrate that occurs under certain nutritional conditions. We propose that synthesis of this reserve material, to the extent of 70% of the dry weight of the organism, serves as an electron and carbon ;sink' when conditions prevail that would otherwise inhibit nitrogen fixation and growth.  相似文献   

17.
Evidence is presented that a number of derivatives of adenylic acid may bind to the allosteric NADH binding site of Escherichia coli citrate synthase. This evidence includes the facts that all the adenylates inhibit NADH binding in a competitive manner and that those which have been tested protect an enzyme sulfhydryl group from reaction with 5,5'-dithiobis-(2-nitrobenzoic acid) in the same way that NADH does. However, whereas NADH is a potent inhibitor of citrate synthase, most of the adenylates are activators. The best activator, ADP-ribose, increases the affinity of the enzyme for the substrate, acetyl-CoA, and saturates the enzyme in a sigmoid manner. A fluorescence technique, involving the displacement of 8-anilino-1-naphthalenesulfonate from its complex with citrate synthase, is used to obtain saturation curves for several nucleotides under nonassay conditions. It is found that acetyl-coenzyme A, coenzyme A, and ADP-ribose all bind to the enzyme cooperatively, and that the binding of each becomes tighter in the presence of KCl, the activator, and oxaloacetic acid (OAA), the second substrate. Another inhibitor, alpha-ketoglutarate, can complete with OAA in the absence of KCl but not in its presence. The nature of the allosteric site of citrate synthase, and the modes of action of several activators and inhibitors, are discussed in the light of this evidence.  相似文献   

18.
The photoaffinity label 8-azido-ATP has been used to study the effect of inhibition of ATP synthase on ATP-driven reverse electron transfer from succinate to NAD+ ('reversal'), succinate- and NADH-driven ATP synthesis and ATP-Pi exchange. In reversal, where ATPase functions as primary proton pump, inactivation by covalently bound nitreno-ATP results in an inhibition that is proportional to the inactivation of ATP hydrolysis, or, consequently, with the concentration of inactivated ATP synthases. Up to 60% inactivation of the reversal rate does not lead to a decrease in delta mu H+. Inhibition of ATP synthase as secondary proton pump results in case of NADH-driven ATP synthesis in a proportional inhibition, but with succinate as substrate ATP synthesis is less than proportionally inhibited, compared with inactivation of ATP hydrolysis. Inhibition of one of the primary pumps of NADH-driven ATP synthesis, the NADH:Q oxidoreductase, with rotenone also resulted in an inhibition of the rate of ATP synthesis proportional to that of the NADH oxidation. ATP-Pi exchange is much more affected than ATP hydrolysis by photoinactivation with 8-azido-ATP. Contrary to reversal and NADH-driven ATP synthesis the rate of ATP-Pi exchange does not depend linearly, but quadratically on the concentration of active ATP synthases. The observed proportional relationships between inhibition of the primary or secondary pump and the inhibition of the overall energy-transfer reactions do not support the existence of a pool intermediate in energy-transduction reactions. However, the results are consistent with a direct transfer of energy from redox enzymes to ATP synthase and vice versa.  相似文献   

19.
1. L-Lactate dehydrogenase from lettuce (Lactuca sativa) leaves was purified to electrophoretic homogeneity by affinity chromatography. 2. In addition to its NAD(H)-dependent activity with L-lactate and pyruvate, the enzyme also catalyses the reduction of hydroxypyruvate and glyoxylate. The latter activities are not due to a contamination of the enzyme preparations with hydroxypyruvate reductase. 3. The enzyme shows allosteric properties that are markedly by the pH. 4. ATP is a potent inhibitor of the enzyme. The kinetic data suggest that the inhibition by ATP is competitive with respect to NADH at pH 7.0 and 6.2. The existence of regulatory binding sites for ATP and NADH is discussed. 5. Bivalent metal cations and fructose 6-phosphate relieve the ATP inhibition of the enzyme. 6. A function of leaf L-lactate dehydrogenase is proposed as a component of the systems regulating the cellular pH and/or controlling the concentration of reducing equivalents in the cytoplasm of leaf cells.  相似文献   

20.
Studies of citrate synthase (CitA) were carried out to investigate its role in morphological development and biosynthesis of antibiotics in Streptomyces coelicolor. Purification of CitA, the major vegetative enzyme activity, allowed characterization of its kinetic properties. The apparent K(m) values of CitA for acetyl coenzyme A (acetyl-CoA) (32 microM) and oxaloacetate (17 microM) were similar to those of citrate synthases from other gram-positive bacteria and eukaryotes. CitA was not strongly inhibited by various allosteric feedback inhibitors (NAD(+), NADH, ATP, ADP, isocitrate, or alpha-ketoglutarate). The corresponding gene (citA) was cloned and sequenced, allowing construction of a citA mutant (BZ2). BZ2 was a glutamate auxotroph, indicating that citA encoded the major citrate synthase allowing flow of acetyl-CoA into the tricarboxylic acid (TCA) cycle. Interruption of aerobic TCA cycle-based metabolism resulted in acidification of the medium and defects in morphological differentiation and antibiotic biosynthesis. These developmental defects of the citA mutant were in part due to a glucose-dependent medium acidification that was also exhibited by some other bald mutants. Unlike other acidogenic bald strains, citA and bldJ mutants were able to produce aerial mycelia and pigments when the medium was buffered sufficiently to maintain neutrality. Extracellular complementation studies suggested that citA defines a new stage of the Streptomyces developmental cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号