首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The role of hexokinase PII in mediating carbon catabolite derepression in yeast has been examined. Hexokinase isoenzyme PII (EC 2.7.1.1) was partially degraded when protease inhibitors were omitted from the buffer used for preparation of cell-free extracts. The hexokinase PII inactivation induced by D-xylose was correlated with derepression of maltase (EC 3.2.1.20) in the wild-type strain Saccharomyces cerevisiae G-517 and in D.308.3, a strain that contains the cloned hexokinase PII gene on a multicopy plasmid. This inactivation was not correlated with the loss of hexokinase PII protein as assayed by immunoblotting. We conclude that during the derepression process there is no release of proteolytic peptides from hexokinase PII.  相似文献   

4.
The expression of high-affinity glucose uptake in Saccharomyces cerevisiae strains carrying conditional mutations conferring a block of secretion and cell surface growth (sec) revealed a requirement for a functional secretory pathway for derepression of carrier activity. Thus, in strains carrying the sec1-1, sec4-2, sec7-1, sec14-3, or sec17-1 mutation, no high-affinity carrier activity was expressed after a shift to derepressing glucose concentrations at the nonpermissive temperature. In the case of sec18-1, however, derepression of carrier activity did occur at both the permissive and nonpermissive temperature, but not to the same extent as found in the wild-type strain, suggesting that SEC18 function may not be essential for expression of carrier activity. In sec1-1, accumulation of high-affinity carrier activity (or a component thereof) in presecretory vesicles during incubation at the nonpermissive temperature was demonstrated. The presence of a high glucose concentration in the medium did not affect transfer of that accumulated carrier function to the cell surface. Carrier function did not accumulate in strains carrying the other sec mutations. Analysis of the stability of high-affinity carrier activity at 37 degrees C demonstrated rapid and unexpected loss of carrier activity not affected by the presence of glucose in the medium. Thus, blockage of cell surface growth seems to affect turnover rates of hexose carrier activities.  相似文献   

5.
6.
7.
8.
The yeast gene GCN4 produces an mRNA that has a long 5' 'untranslated' region containing four small open reading frames (ORFs) preceding the protein coding frame. This configuration suppresses the rate by which GCN4 protein is synthesized. However, translational derepression of the GCN4 mRNA occurs when yeast cells are grown under conditions of amino acid limitation. Such translational derepression requires the GCN2 protein kinase and the presence of the 5' most proximal ORF. In this study we show that a functional coupling between the translation of the first ORF and the amount of the GCN2 protein is responsible for the translational derepression of the GCN4 mRNA. Our evidence suggests that this coupling involves an increase in the ability of 40S ribosomal subunits that have translated the first frame to resume scanning and reinitiate translation at a downstream AUG independently of the base sequence in the intervening region.  相似文献   

9.
10.
11.
 Carbon and nitrogen regulation of UBI4, the stress-inducible polyubiquitin gene of Saccharomyces cerevisiae, was investigated using a UBI4 promoter-LacZ fusion gene (UBI4-LacZ). Expression of this gene in cells grown on different media indicated that the UBI4 promoter is more active during growth on respiratory than on fermentable carbon sources but is not subject to appreciable control by nitrogen catabolite repression. UBI4-LacZ expression was virtually identical in cells having constitutively high (ras2, sra1-13) or constitutively low (ras2) levels of cyclic AMP-dependent protein kinase activity, indicating that this kinase does not exert a major influence on UBI4 expression. Catabolite derepression control of the UBI4 promoter was confirmed by measurements of UBI4-LacZ expression in hap mutant and wild-type strains before and after transfer from glucose to lactate. Mutagenesis of the perfect consensus for HAP2/3/4 complex binding at position −542 resulted in considerable reduction of UBI4 promoter derepression with respiratory adaptation in HAP wild-type cells and abolished the reduced UBI4-LacZ derepression normally seen when aerobic cultures of the hap1 mutant are transferred from glucose to lactate. This HAP2/3/4 binding site is therefore a major element contributing to catabolite derepression of the UBI4 promoter, although data obtained with hap1 mutant cells indicated that HAP1 also contributes to this derepression. The HAP2/3/4 and HAP1 systems are normally found to activate genes for mitochondrial (respiratory) functions. Their involvement in mediating higher activity of the UBI4 promoter during respiratory growth may reflect the contribution of UBI4 expression to tolerance of oxidative stress. Received: 3 June 1996 / Accepted: 20 August 1996  相似文献   

12.
13.
14.
A decrease in the in vivo acylation level of methionine transfer ribonucleic acid (tRNAmet) induced by methioninyl adenylate led to a specific derepression of methionyl-transfer ribonucleic acid (tRNA) synthetase formation. This derepression required de novo protein synthesis and was reflected by overproduction of unaltered enzyme. Two different strains of Escherichia coli K-12 that have normal levels of methionyl-tRNA synthetase were examined and the derepression of methionyl-tRNA synthetase was observed in both. Moreover, for one of these strains, the relation between the level of methionyl-tRNA synthetase and deacylation level of tRNAmet was established; under the growth conditions used, when more than 25% of tRNAmet was deacylated, methionyl-tRNA synthetase formation was derepressed and the level of derepression became proportional to the amount of tRNAmet deacylated. Concomitantly, the enzyme was subject to specific inactivation as a consequence of which the true de novo rate of derepression of the formation of this enzyme was higher than that determined by measurements of enzyme activity. These studies were extended to strains AB311 and ed2, which had a constitutive enhanced level of methionyl-tRNA synthetase. In these strains no derepression of enzyme formation was observed on reducing the acylation level of tRNAmet by use of methioninyl adenylate.  相似文献   

15.
16.
17.
Carbon and nitrogen regulation of UBI4, the stress-inducible polyubiquitin gene of Saccharomyces cerevisiae, was investigated using a UBI4 promoter-LacZ fusion gene (UBI4-LacZ). Expression of this gene in cells grown on different media indicated that the UBI4 promoter is more active during growth on respiratory than on fermentable carbon sources but is not subject to appreciable control by nitrogen catabolite repression. UBI4-LacZ expression was virtually identical in cells having constitutively high (ras2, sra1-13) or constitutively low (ras2) levels of cyclic AMP-dependent protein kinase activity, indicating that this kinase does not exert a major influence on UBI4 expression. Catabolite derepression control of the UBI4 promoter was confirmed by measurements of UBI4-LacZ expression in hap mutant and wild-type strains before and after transfer from glucose to lactate. Mutagenesis of the perfect consensus for HAP2/3/4 complex binding at position ?542 resulted in considerable reduction of UBI4 promoter derepression with respiratory adaptation in HAP wild-type cells and abolished the reduced UBI4-LacZ derepression normally seen when aerobic cultures of the hap1 mutant are transferred from glucose to lactate. This HAP2/3/4 binding site is therefore a major element contributing to catabolite derepression of the UBI4 promoter, although data obtained with hap1 mutant cells indicated that HAP1 also contributes to this derepression. The HAP2/3/4 and HAP1 systems are normally found to activate genes for mitochondrial (respiratory) functions. Their involvement in mediating higher activity of the UBI4 promoter during respiratory growth may reflect the contribution of UBI4 expression to tolerance of oxidative stress.  相似文献   

18.
19.
Nutritional factors controlling derepression of nitrogenase activity in Parasponia-Rhizobium strain ANU 289 were studied in stationary and agitated liquid cultures. Altering type and/or concentrations of the constituents of the derepression medium in respect of carbon and nitrogen sources influenced both derepression kinetics as well as the maximal level of activity. Hexose sugars and disaccharides stimulated nitrogenase activity three to six-fold compared to pentose sugars. Activity was also modulated by combining sugars with some organic acids such as succinate, fumarate and pyruvate but not with others (e.g. -ketoglutarate, malate, malonate). Of the range of nitrogen sources tested, either casamino acids (at 0.05%, but not at 0.1%), glutamate, proline or to a lesser extent histidine (each at 5 mM N) supported significant derepression of nitrogenase activity. Notably glutamine, urea, alanine, ammonium sulfate, nitrate, nitrite (each at 5 mM N) and yeast extract (0.05%) failed to derepress or support nitrogenase activity. Ammonium (5 mM) abolished established nitrogenase activity of rapidly agitated cultures within 15 h after addition. This inhibitory effect was alleviated by the addition of methionine sulfoximime (10 mM). Thus, in view of strong glutamine effects, ammonium repression appears to be mediated by glutamine and not by ammonium itself.Abbreviations HEPES [4-(2-hydroxyethyl)-1-piperazine-ethane; sulfonic acid] - MOPS [3-(N-morpholino) propane sulphonic acid] - MSX Methionine sulfoximine  相似文献   

20.
M Noshiro  M Negishi 《Biochemistry》1988,27(17):6444-6448
The genetic basis for repression of I-P-450(16 alpha) in livers of male mice was examined in 129/J and BALB/cJ mice. Castration of adult male BALB/cJ but not 129/J mice resulted in derepression of I-P-450(16 alpha) at its mRNA and activity levels. It was further found that the patterns of derepression in (129/J x BALB/cJ) F1 and F2 offspring indicated that the derepression of I-P-450(16 alpha) is inherited as an autosomal additive trait. The distribution of derepression among castrated recombinant inbred strains (9 X A) indicated a close link of a locus repressing I-P-450(16 alpha) in male mice to the Rip locus on chromosome 7. Rip was previously defined as a locus that regulates specific expression of I-P-450(16 alpha) in livers of female mice [Noshiro, M., Lakso, M., Kawajiri, K., & Negishi, M. (1988) Biochemistry (preceding paper in this issue)]. Other tested inbred mice (A/HeJ, C57BL/6J, C3H/HeJ, and DBA/2J) showed the derepression of I-P-450(16 alpha) by castration, such as BALB/cJ. We propose Ripr (repression of an action of Rip locus in male mice) as the name of the locus by which repression of I-P-450(16 alpha) is regulated in male mice. Treatment of castrated male BALB/cJ mice by testosterone propionate, estradiol valerate, or diethylstilbestrol repressed I-P-450(16 alpha) to the levels seen in normal BALB/cJ male mice. Dihydrotestosterone, however, had little effect in repressing I-P-450(16 alpha) in castrated mice. The results suggested that estrogen rather than androgen is a repressor of I-P-450(16 alpha) in livers of male mice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号