首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) was measured on six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and Streptococcus zooepidemicus. Film thickness and surface morphology depended on the HA molecular weight and concentration. BSA coverage was enhanced on surfaces in competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of HA utilized. With changing bulk protein concentration from 20 to 40 μg ml(-1) for each species, Fg coverage on silicon increased by 4x, whereas both BSA and Fg adsorption on dextran and HA were far less dependent on protein bulk concentration.  相似文献   

2.
Adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) was measured on six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and Streptococcus zooepidemicus. Film thickness and surface morphology depended on the HA molecular weight and concentration. BSA coverage was enhanced on surfaces in competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of HA utilized. With changing bulk protein concentration from 20 to 40 μg ml?1 for each species, Fg coverage on silicon increased by 4x, whereas both BSA and Fg adsorption on dextran and HA were far less dependent on protein bulk concentration.  相似文献   

3.
The adsorption of the protein avidin from hen egg white on patterns of silicon dioxide and platinum surfaces on a microchip and the use of fluorescent microscopy to detect binding of biotin are described. A silicon dioxide microchip was formed using plasma-enhanced chemical vapor deposition while platinum was deposited using radiofrequency sputtering. After cleaning using a plasma arc, the chips were placed into solutions containing avidin or bovine serum albumin. The avidin was adsorbed onto the microchips from phosphate-buffered saline (PBS) or from PBS to which ammonium sulfate had been added. Avidin was also adsorbed onto bovine serum albumin (BSA)-coated surfaces of oxide and platinum. Fluorescence microscopy was used to confirm adsorption of labeled protein, or the binding of fluorescently labeled biotin onto previously adsorbed, unlabeled avidin. When labeled biotin in PBS was presented to avidin adsorbed onto a BSA-coated microchip, the fluorescence signal was significantly higher than for avidin adsorbed onto the biochip alone. The results show that a simple, low-cost adsorption process can deposit active protein onto a chip in an approach that has potential application in the development of protein biochips for the detection of biological species.  相似文献   

4.
This study was conducted to monitor the electrochemical responses of two proteins (bovine serum albumin (BSA) and gelatin) and their thiol derivatives adsorbed onto gold (Au) electrodes, which were analyzed by a "nonlinear" impedance method. A sinusoidal voltage is applied to a protein-containing aqueous solution and the waveform of the output current is analyzed by fast Fourier transformation (FFT). The intensities of the higher harmonics in the FFT varied with the species of protein and their thiol derivatives, and with time. From the higher harmonics, voltage-dependent capacitance and conductance were quantitatively evaluated to differentiate the state of adsorbed protein. Adsorption and desorption characteristics of BSA and its thiol derivative on the Au surface were continuously measured by a quartz crystal microbalance (QCM) in situ. The microscopic state of thiol-derivatized BSA adsorbed onto the Au surface was imaged by atomic force microscopy (AFM). In general, thiol-derivatized proteins were tightly adsorbed on the Au surface and showed no desorption. The present electrochemical measurements clearly differentiated adsorption characteristics of physically adsorbed (physisorbed) and chemically adsorbed (chemisorbed) proteins on Au surfaces.  相似文献   

5.
The design and fabrication of protein biochips requires characterization of blocking agents that minimize nonspecific binding of proteins or organisms. Nonspecific adsorption of Escherichia coli, Listeria innocua, and Listeria monocytogenes is prevented by bovine serum albumin (BSA) or biotinylated BSA adsorbed on SiO(2) surfaces of a biochip that had been modified with a C(18) coating. Biotinylated BSA forms a protein-based surface that in turn binds streptavidin. Because streptavidin has multiple binding sites for biotin, it in turn anchors other biotinylated proteins, including antibodies. Hence, biotinylated BSA simultaneously serves as a blocking agent and a foundation for binding an interfacing protein, avidin or streptavidin, which in turns anchors biotinylated antibody. In our case, the antibody is C11E9, an IgG-type antibody that binds Listeria spp. Nonspecific adsorption of another bacterium, Escherichia coli, is also minimized due to the blocking action of the BSA. The blocking characteristics of BSA adsorbed on C(18)-derivatized SiO(2) surfaces for construction of a protein biochip for electronic detection of pathogenic organisms is investigated.  相似文献   

6.
This paper investigates the adsorption of bovine serum albumin (BSA) and bovine hemoglobin (BHb) model proteins onto novel thymine-functionalized polystyrene (PS-VBT) microspheres, in comparison with polystyrene (PS) microspheres. Maximum adsorption was obtained for both proteins near their corresponding isoelectric points (pI at pH = 4.7 for BSA and 7.1 for BHb). FTIR and adsorption isotherm analysis demonstrated that, although both proteins were physisorbed onto PS through nonspecific hydrophobic interactions, adsorption onto the functionalized copolymers occurred by both physisorption and chemisorption via hydrogen bonding. FTIR analysis also indicated conformational changes in the secondary structure of BSA and BHb adsorbed onto PS, whereas little or no conformation change was seen in the case of adsorption onto PS-VBT. Atomic force microscopy (AFM), consistent with the isotherm results, also demonstrated monolayer adsorption for both proteins. AFM images of BSA adsorbed onto copolymers with 20 mol % surface VBT loading showed exclusively end-on orientation. Adsorption onto copolymers with lower functionality showed mixed end-on and side-on orientation modes of BSA, and only the side-on orientation was observed on PS. The AFM results agreed well with theoretically calculated and experimentally obtained adsorption capacities. AFM together with calculated and observed adsorption capacity data for BHb indicated that this protein might be highly compressed on the copolymer surface. Adsorption from a binary mixture of BSA and BHb onto PS-VBT showed good separation at pH=7.0; approximately 90% of the adsorbed protein was BHb. The novel copolymers have potential applications in biotechnology.  相似文献   

7.
A tri-block-coupling polymer, "PEO-MDI-PEO" ["poly(ethylene oxide)-4,4'-methylene diphenyl diisocyanate-poly(ethylene oxide)", abbreviated "MPEO"], was used to react with a triazine dye, Cibacron Blue F3G-A (ciba), in an alkaline environment. The product of this nucleophilic reaction was a penta-block-coupling polymer, "ciba-PEO-MDI-PEO-ciba" (abbreviated "cibaMPEO"). The cibaMPEO-modified poly(ether urethane) (PEU) surfaces were prepared by dip-coating and detected by XPS. The surface enrichment of both ciba endgroups and poly(ethylene oxide) spacer-arms was revealed. On the modified surfaces, bovine serum albumin (BSA)-adsorbing experiments were carried out, respectively, in the low and high BSA bulk-concentration solutions, and accordingly, the methods of radioactive (125)I-probe and ATR-FTIR were, respectively, employed for the characterization. The competitive adsorption of BSA and bovine serum fibrinogen (Fg) in the BSA-Fg binary solutions was also studied using a (125)I-probe, and through which the reversibly BSA-selective adsorption on cibaMPEO-modified PEU surfaces was confirmed. Finally, the improvement of blood-compatibility on the modified surfaces was verified by the plasma recalcification time (PRT) test.  相似文献   

8.
Extent of adsorption of proteins at alumina-water interface from solutions containing binary mixture of beta-lactoglobulin and bovine serum albumin (BSA), beta-lactoglobulin and gelatin, and gelatin and bovine serum albumin has been estimated as functions of protein concentrations at varying pH, ionic strength, temperature and weight fraction ratios of protein mixture. The extent of adsorption (gamma lacw) of lactoglobulin in the presence of BSA increases with increase of protein concentration (Clac) until it reaches a maximum but a fixed value gamma lacw(m). Extent of adsorption gamma serw also initially increases with increase of protein concentrations until it reaches maximum value gamma serw(m). Beyond these protein concentrations, adsorbed BSA is gradually desorbed due to the preferential adsorption of lactoglobulin from the protein mixture. In many systems, gamma serw at high protein concentrations even becomes negative due to the strong competition of BSA and water for binding to the surface sites in the presence of lactoglobulin. For lactoglobulin-gelatin mixtures, adsorption of both proteins is enhanced as protein concentration is increased until limiting values for adsorption are reached. Beyond the limiting value, lactoglobulin is further accumulated at the interface without limit when protein concentration is high. For gelatin-albumin mixtures, extent of gelatin adsorption increases with increase in the adsorption of BSA. The limit for saturation of adsorption for gelatin is not reached for many systems. At acid pH, adsorbed BSA appears to be desorbed from the surface in the presence of gelatin. From the results thus obtained the role of electrostatic and hydrophobic effects in controlling the adsorption process has been analysed.  相似文献   

9.
The conformational changes in well-characterized model proteins [bovine ribonuclease A (RNase A), horseradish peroxidase, sperm-whole myoglobin, human hemoglobin, and bovine serum albumin (BSA)] upon adsorption on ultrafine polystyrene (PS) particles have been studied using circular dichroism (CD) spectroscopy. These proteins were chosen with special attention to molecular flexibility. The ultrafine PS particles were negatively charged and have average diameters of 20 or 30 nm. Utilization of these ultrafine PS particles makes it possible to apply the CD technique to determine the secondary structure of proteins adsorbed on the PS surface. Effects of protein properties and adsorption conditions on the extent of the changes in the secondary structure of protein molecules upon adsorption on ultrafine PS particles were studied. The CD spectrum changes upon adsorption were significant in the "soft" protein molecules (myoglobin, hemoglobin, and BSA), while they were insingnificant in the "rigid" proteins (RNase A and peroxidase). The soft proteins sustained a marked decrease in alpha-helix content upon adsorption. Moreover, the native alpha-helix content, which is given as the percentage of the alpha-helix content in the free proteins, of adsorbed BSA was found to decrease with decreasing pH and increase with increasing adsorbed amount. These observations confirm some well-known hypotheses for the confirmational chages in protein molecules upon adsorption. (c) 1992 John Wiley & Sons, Inc.  相似文献   

10.
Chen A  Kozak D  Battersby BJ  Trau M 《Biofouling》2008,24(4):267-273
The use and advantage of flow cytometry as a particle-by-particle, low sampling volume, high-throughput screening technique for quantitatively examining the non-specific adsorption of proteins onto surfaces is presented. The adsorption of three proteins: bovine serum albumin (BSA), immunoglobulin gamma (IgG) and protein G, incubated at room temperature for 2 h onto organosilica particles modified with poly(ethylene glycol) (PEG) of increasing MW (2000, 3400, 6000, 10,000 and 20,000 g mol(-1)) and grafted amounts (0.14-1.4 mg m(-2)) was investigated as a model system. Each protein exhibited Langmuir-like, high affinity monolayer limited adsorption on unmodified particles with the proteins reaching surface saturation at 1.8, 4.0 and 2.5 mg m(-2) for BSA, IgG and protein G, respectively. Protein adsorption on PEG-modified surfaces was found to decrease with increasing amounts of grafted polymer. PEG grafting amounts >0.6 mg m(-2) effectively prevented the adsorption of the larger two proteins (BSA and IgG) while a PEG grafting amount >1.3 mg m(-2) was required to prevent the adsorption of the smaller protein G.  相似文献   

11.
The secondary structure and the thermostability of bovine serum albumin (BSA), before adsorption and after homomolecular displacement from silica and polystyrene particles, are studied by circular dichroism spectroscopy and differential scanning calorimetry. The structural perturbations induced by the hydrophilic silica surface are reversible, i.e. BSA completely regains the native structure and stability after being exchanged. On the other hand, the adsorption on, and subsequent desorption from, polystyrene particles causes irreversible changes in the stability and (secondary) structure of BSA. The exchanged proteins have a higher denaturation temperature and a lower enthalpy of denaturation than native BSA. The alpha-helix content is reduced while the beta-turn fraction is increased in the exchanged molecules. Both effects are more pronounced when the protein is displaced from less crowded sorbent surfaces. The irreversible surface-induced conformational change may be related to some aggregation of BSA molecules after being exposed to a hydrophobic surface.  相似文献   

12.
The biological consequences of protein adsorption on biomaterial surfaces are considered to be of utmost importance for their biocompatibility. A new method based on amino group-labeling coupled to a chemiluminescence reaction for direct determination of proteins adsorbed on material surfaces was employed. This method was used to explore the effects of surface chemistry and surface roughness on protein adsorption in a silicon oxide model system. Corundum sandblasting was applied to silicon wafers to create roughened surfaces while immobilization of fluorocarbon-, hydrocarbon-, and poly(ethylene glycol)-containing silanes produced surfaces of varying wettability. The adsorption behavior of two complex body fluids, human serum and saliva, and of two purified components, human serum albumin and fibronectin, was strongly influenced by the surface parameters. A general tendency to higher amounts of adsorbed protein was found on roughened surfaces and modification with poly(ethylene glycol) or with fluorocarbon moieties reduced protein adsorption. The values obtained with the new method could be confirmed by a colorimetric determination of protein amounts adsorbed on identically modified silica beads and were in accordance with those previously reported utilizing established methods for protein quantification. The presented method, which was methodically simple to perform and allowed the simultaneous measurement of a large number of samples, may be of future value for high-throughput surveying of the protein adsorption characteristics of biomaterials.  相似文献   

13.
Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was applied to investigate the interaction of bovine serum albumin (BSA) and fibrinogen with a biomedical-grade 316LVM stainless steel surface, in terms of the adsorption thermodynamics and adsorption-induced secondary structure changes of the proteins. Highly negative apparent Gibbs energy of adsorption values revealed a spontaneous adsorption of both proteins onto the surface, accompanied by significant changes in their secondary structure. It was determined that, at saturated surface coverages, lateral interactions between the adsorbed BSA molecules induced rather extensive secondary structure changes. Fibrinogen's two coiled coils appeared to undergo negligible secondary structure changes upon adsorption of the protein, while large structural rearrangements of the protein's globular domains occurred upon adsorption. The secondary structure of adsorbed fibrinogen was not influenced by lateral interactions between the adsorbed fibrinogen molecules. PM-IRRAS was deemed to be viable for investigating protein adsorption and for obtaining information on adsorption-induced changes in their secondary structures.  相似文献   

14.
A new type of copolymer composed of l-histidine (ampholyte) and n-butyl methacrylate (hydrophobic moiety) was developed for the preparation of nonbiofouling surfaces. The copolymer adsorbed onto resin surfaces and made the surface very hydrophilic. The hydrophilization effect was higher than that of bovine serum albumin (BSA). When polystyrene surfaces were coated with the copolymer, both the nonspecific adsorption of protein and the adhesion of cells were significantly reduced in comparison with BSA coating. The newly synthesized polymer is a new and useful candidate for the preparation of nonbiofouling surfaces.  相似文献   

15.
The preparation of assemblies consisting of multiple molecular layers of bovine serum albumin (BSA), monoclonal antibodies against horseradish peroxidase (anti-HRP), and monoclonal antibodies against methotrexate (anti-MTT), as well as interaction of the assemblies with human blood plasma were observed using a grating coupler and Young interferometer (YI). The assemblies could be arranged according to decreasing amounts of nonspecific deposits bound irreversibly to them from blood plasma as follows-an adsorbed antibody monolayer saturated with adsorbed BSA, antibody multilayers linked with polycations, antibodies covalently immobilized on a BSA layer densely crosslinked with glutaraldehyde (GA), slightly crosslinked BSA double layer, slightly crosslinked antibody double layers. The occurrence of human serum albumin (HSA), human fibrinogen (Fg), IgG, and IgM in the plasma deposits was studied by binding the respective antibodies. IgG, IgM, and Fg were detected in plasma deposits on the immobilized assemblies while the composition of a plasma deposit on the unmodified sensor surface reflected roughly the plasma composition containing mainly adsorbed HSA and Fg. A crosslinked anti-HRP double layer was immobilized on a waveguiding branch of YI and a similar anti-MTT double layer was immobilized on the other branch. The sensor response to blood plasma was fairly decreased owing to a compensation of the respective optical changes in the two branches, in which a similar non-specific adsorption took place. The addition of HRP or MTT to plasma induced specific responses of the corresponding branches.  相似文献   

16.
With the use of single-molecule total internal reflection fluorescence microscopy (TIRFM), the dynamics of bovine serum albumin (BSA) and human fibrinogen (Fg) at low concentrations were observed at the solid-aqueous interface as a function of temperature on hydrophobic trimethylsilane (TMS) and hydrophilic fused silica (FS) surfaces. Multiple dynamic modes and populations were observed and characterized by their surface residence times and squared-displacement distributions (surface diffusion). Characteristic desorption and diffusion rates for each population/mode were generally found to increase with temperature, and apparent activation energies were determined from Arrhenius analyses. The apparent activation energies of desorption and diffusion were typically higher on FS than on TMS surfaces, suggesting that protein desorption and mobility were hindered on hydrophilic surfaces due to favorable protein-surface and solvent-surface interactions. The diffusion of BSA on TMS appeared to be activationless for several populations, whereas diffusion on FS always exhibited an apparent activation energy. All activation energies were small in absolute terms (generally only a few kBT), suggesting that most adsorbed protein molecules are weakly bound and move and desorb readily under ambient conditions.  相似文献   

17.
It is known that protein adsorption is the initial interaction between implanted biomaterials and biological environment. Generally, a complex protein layer will be formed on material surfaces within a few minutes and the composition of this layer at the interface determines the biological response to the implanted material, and therefore the long-term compatibility of the biomaterial. Despite different techniques exist to observe protein adsorption on biomaterials, none of them led to the identification of adsorbed proteins. In this paper, we report a chromatographic technique coupled to proteomics to analyse and identify proteins from complex biological samples adsorbed on biomaterial surfaces. This approach is based on (1) elaboration of the chromatographic support containing the biomaterial (2) a chromatography step involving adsorption of proteins on the biomaterial (3) the high-resolution separation of eluted proteins by 2-DE gel and (4) the identification of proteins by mass spectrometry. Experiments were performed with proteins from platelets rich plasma (PRP) adsorbed on a biomaterial which consist in titanium bioactivated with PolyNaSS. Our results show that chromatographic approach combined to 2-DE gels and mass spectrometry provides a powerful tool for the analysis and identification of proteins adsorbed on various surfaces.  相似文献   

18.
In many drug delivery systems such as liposomes, the adsorption of interstitial proteins upon administration can have a huge effect on the elimination, release, and stability of the delivery system. For example, it is assumed that PEGylated liposomes prevent the adsorption of opsonins and thereby prolong the circulation time in vivo, and EMEA guidelines recommend that more than 80% of the protein antigen is adsorbed in the formulation of adjuvant systems. However, few methods exist to elucidate this protein adsorption. The present study indicates that total internal reflection fluorescence (TIRF) is a possible method to examine the adsorption and exchange of proteins at lipid surfaces. In the TIRF set-up, a lipid layer can be formed [exemplified with dimethyldioctadecylammonium bromide (DDA) and D-(+)-trehalose 6,6’-dibehenate (TDB)] whereafter protein (i.e., ovalbumin or an antigen, Ag85B-ESAT-6) is adsorbed, and these proteins can subsequently be displaced by the abundant interstitial protein (i.e., serum albumin).  相似文献   

19.
The use of polymerized lipid bilayers as substrates for microcontact printing (muCP) of protein films was investigated. We have previously shown that vesicle fusion of bis-SorbPC, a dienoate lipid, on glass and silica substrates, followed by redox-initiated radical polymerization, produces a planar supported lipid bilayer (PSLB) that is ultrastable(1a) [Ross, E. E.; Rozanski, L. J.; Spratt, T.; Liu, S.; O'Brien, D. F.; Saavedra, S. S. Langmuir 2003, 19, 1752] and highly resistant to nonspecific adsorption of dissolved proteins [Ross, E. E.; Spratt, T.; Liu, S.; Rozanski, L. J.; O'Brien, D. F.; Saavedra, S. S. Langmuir 2003, 19, 1766].(1b) Here we demonstrate that muCP of bovine serum albumin (BSA) onto a dried poly(bis-SorbPC) PSLB from a poly(dimethylsiloxane) (PDMS) stamp produces a layer of strongly adsorbed protein, comparable in surface coverage to films printed on glass surfaces. Immobilization of proteins on poly(PSLB)s has potential applications in biosensing, and this work shows that direct muCP of proteins is a technically simple approach to create immobilized monolayers, as well as multilayers of different proteins.  相似文献   

20.
Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号