共查询到20条相似文献,搜索用时 0 毫秒
1.
A new method based on neural network theory is presented to analyze and quantify the information content of far UV circular dichroism spectra. Using a backpropagation network model with a single hidden layer between input and output, it was possible to deduce five different secondary structure fractions (helix, parallel and antiparallel beta-sheet, beta-turn and random coil) with satisfactory correlations between calculated and measured secondary structure data. We demonstrate that for each wavelength interval a specific network is suitable. The remaining discrepancy between the secondary structure data from neural network prediction and crystallography may be attributed to errors in the determination of protein concentration and random noise in the CD signal, as indicated by simulations. 相似文献
2.
This paper presents a vision-based force measurement method using an artificial neural network model. The proposed model is used for measuring the applied load to a spherical biological cell during micromanipulation process. The devised vision-based method is most useful when force measurement capability is required, but it is very challenging or even infeasible to use a force sensor. Artificial neural networks in conjunction with image processing techniques have been used to estimate the applied load to a cell. A bio-micromanipulation system capable of force measurement has also been established in order to collect the training data required for the proposed neural network model. The geometric characterization of zebrafish embryos membranes has been performed during the penetration of the micropipette prior to piercing. The geometric features are extracted from images using image processing techniques. These features have been used to describe the shape and quantify the deformation of the cell at different indentation depths. The neural network is trained by taking the visual data as the input and the measured corresponding force as the output. Once the neural network is trained with sufficient number of data, it can be used as a precise sensor in bio-micromanipulation setups. However, the proposed neural network model is applicable for indentation of any other spherical elastic object. The results demonstrate the capability of the proposed method. The outcomes of this study could be useful for measuring force in biological cell micromanipulation processes such as injection of the mouse oocyte/embryo. 相似文献
3.
Miranda EN 《International journal of neural systems》2000,10(4):281-285
The capacity of a layered neural network for learning hetero-associations is studied numerically as a function of the number M of hidden neurons. We find that there is a sharp change in the learning ability of the network as the number of hetero-associations increases. This fact allows us to define a maximum capacity C for a given architecture. It is found that C grows logarithmically with M. 相似文献
4.
A new structure and training method for multilayer neural networks is presented. The proposed method is based on cascade training of subnetworks and optimizing weights layer by layer. The training procedure is completed in two steps. First, a subnetwork, m inputs and n outputs as the style of training samples, is trained using the training samples. Secondly the outputs of the subnetwork is taken as the inputs and the outputs of the training sample as the desired outputs, another subnetwork with n inputs and n outputs is trained. Finally the two trained subnetworks are connected and a trained multilayer neural networks is created. The numerical simulation results based on both linear least squares back-propagation (LSB) and traditional back-propagation (BP) algorithm have demonstrated the efficiency of the proposed method. 相似文献
5.
Assessment of human locomotion by using an insole measurement system and artificial neural networks 总被引:2,自引:0,他引:2
Zhang K Sun M Lester DK Pi-Sunyer FX Boozer CN Longman RW 《Journal of biomechanics》2005,38(11):2276-2287
A new method for measuring and characterizing free-living human locomotion is presented. A portable device was developed to objectively record and measure foot-ground contact information in every step for up to 24h. An artificial neural network (ANN) was developed to identify the type and intensity of locomotion. Forty subjects participated in the study. The subjects performed level walking, running, ascending and descending stairs at slow, normal and fast speeds determined by each subject, respectively. The device correctly identified walking, running, ascending and descending stairs (accuracy 98.78%, 98.33%, 97.33%, and 97.29% respectively) among different types of activities. It was also able to determine the speed of walking and running. The correlation between actual speed and estimated speed is 0.98, p< 0.0001. The average error of walking and running speed estimation is -0.050+/-0.747 km/h (mean +/- standard deviation). The study has shown the measurement of duration, frequency, type, and intensity of locomotion highly accurate using the new device and an ANN. It provides an alternative tool to the use of a gait lab to quantitatively study locomotion with high accuracy via a small, light and portable device, and to do so under free-living conditions for the clinical applications. 相似文献
6.
This paper describes a new method for pruning artificial neural networks, using a measure of the neural complexity of the neural network. This measure is used to determine the connections that should be pruned. The measure computes the information-theoretic complexity of a neural network, which is similar to, yet different from previous research on pruning. The method proposed here shows how overly large and complex networks can be reduced in size, whilst retaining learnt behaviour and fitness. The technique proposed here helps to discover a network topology that matches the complexity of the problem it is meant to solve. This novel pruning technique is tested in a robot control domain, simulating a racecar. It is shown, that the proposed pruning method is a significant improvement over the most commonly used pruning method Magnitude Based Pruning. Furthermore, some of the pruned networks prove to be faster learners than the benchmark network that they originate from. This means that this pruning method can also help to unleash hidden potential in a network, because the learning time decreases substantially for a pruned a network, due to the reduction of dimensionality of the network. 相似文献
7.
The importance of research leading to the automation of pollen identification is briefly outlined. A new technique, neural network analysis, is briefly introduced, and then applied to the determination of light microscope images of pollen grains. The results are compared with some previously published statistical classifiers. Although both types of classifiers may work, the neural network is apparently superior to the statistical methods in three ways: high success rates (100% in this case), small number of samples needed for training, and simplicity of features. 相似文献
8.
A selective learning method to improve the generalization of multilayer feedforward neural networks 总被引:1,自引:0,他引:1
Multilayer feedforward neural networks with backpropagation algorithm have been used successfully in many applications. However, the level of generalization is heavily dependent on the quality of the training data. That is, some of the training patterns can be redundant or irrelevant. It has been shown that with careful dynamic selection of training patterns, better generalization performance may be obtained. Nevertheless, generalization is carried out independently of the novel patterns to be approximated. In this paper, we present a learning method that automatically selects the training patterns more appropriate to the new sample to be predicted. This training method follows a lazy learning strategy, in the sense that it builds approximations centered around the novel sample. The proposed method has been applied to three different domains: two artificial approximation problems and a real time series prediction problem. Results have been compared to standard backpropagation using the complete training data set and the new method shows better generalization abilities. 相似文献
9.
Modeling of pain using artificial neural networks 总被引:3,自引:0,他引:3
In dealing with human nervous system, the sensation of pain is as sophisticated as other physiological phenomena. To obtain an acceptable model of the pain, physiology of the pain has been analysed in the present paper. Pain mechanisms are explained in block diagram representation form. Because of the nonlinear interactions existing among different sections in the diagram, artificial neural networks (ANNs) have been exploited. The basic patterns associated with chronic and acute pain have been collected and then used to obtain proper features for training the neural networks. Both static and dynamic representations of the ANNs were used in this regard. The trained networks then were employed to predict response of the body when it is exposed to special excitations. These excitations have not been used in the training phase and their behavior is interesting from the physiological view. Some of these predictions can be inferred from clinical experimentations. However, more clinical tests have to be accomplished for some of the predictions. 相似文献
10.
A. Jun-Wei Wong 《Biological cybernetics》1988,58(6):361-372
The Hopfield model of neural network stores memory in its symmetric synaptic connections and can only learn to recognize sets of nearly orthogonal patterns. A new algorithm is put forth to permit the recognition of general (non-orthogonal) patterns. The algorithm specifies the construction of the new network's memory matrix T
ij, which is, in general, asymmetrical and contains the Hopfield neural network (Hopfield 1982) as a special case. We find further that in addition to this new algorithm for general pattern recognition, there exists in fact a large class of T
ij memory matrices which permit the recognition of non-orthogonal patterns. The general form of this class of T
ij memory matrix is presented, and the projection matrix neural network (Personnaz et al. 1985) is found as a special case of this general form. This general form of memory matrix extends the library of memory matrices which allow a neural network to recognize non-orthogonal patterns. A neural network which followed this general form of memory matrix was modeled on a computer and successfully recognized a set of non-orthogonal patterns. The new network also showed a tolerance for altered and incomplete data. Through this new method, general patterns may be taught to the neural network. 相似文献
11.
Hojin Kim 《Analytical biochemistry》2009,393(1):36-40
2-Cys peroxiredoxin (Prx) is the major subgroup of a family of Prx enzymes that reduce peroxide molecules such as hydrogen peroxide (H2O2). 2-Cys Prxs are inactivated when their active site cysteine residue is hyperoxidized to sulfinic acid. Sulfiredoxin (Srx) is an enzyme that catalyzes reduction of hyperoxidized 2-Cys Prxs in the presence of ATP, Mg2+, and thiol equivalent. Therefore, Srx activity is crucial for cellular function of 2-Cys Prxs. The method currently available for the determination of Srx activity relies on immunoblot detection using antibodies to hyperoxidized enzymes. Here we introduce a simple quantitative assay for Srx activity based on the colorimetric determination of inorganic phosphate released in Srx-dependent reduction of hyperoxidized Prx using the malachite green. The colorimetric assay was used for high-throughput screening of 25,000 chemicals to find Srx inhibitors. 相似文献
12.
C. Di Massimo M. J. Willis G. A. Montague M. T. Tham A. J. Morris 《Bioprocess and biosystems engineering》1991,7(1-2):77-82
Artificial neural networks are made upon of highly interconnected layers of simple neuron-like nodes. The neurons act as non-linear processing elements within the network. An attractive property of artificial neural networks is that given the appropriate network topology, they are capable of learning and characterising non-linear functional relationships. Furthermore, the structure of the resulting neural network based process model may be considered generic, in the sense that little prior process knowledge is required in its determination. The methodology therefore provides a cost efficient and reliable process modelling technique. One area where such a technique could be useful is biotechnological systems. Here, for example, the use of a process model within an estimation scheme has long been considered an effective means of overcoming inherent on-line measurement problems. However, the development of an accurate process model is extremely time consuming and often results in a model of limited applicability. Artificial neural networks could therefore prove to be a useful model building tool when striving to improve bioprocess operability. Two large scale industrial fermentation systems have been considered as test cases; a fed-batch penicillin fermentation and a continuous mycelial fermentation. Both systems serve to demonstrate the utility, flexibility and potential of the artificial neural network approach to process modelling. 相似文献
13.
An effective image retrieval system is developed based on the use of neural networks (NNs). It takes advantages of association ability of multilayer NNs as matching engines which calculate similarities between a user's drawn sketch and the stored images. The NNs memorize pixel information of every size-reduced image (thumbnail) in the learning phase. In the retrieval phase, pixel information of a user's drawn rough sketch is inputted to the learned NNs and they estimate the candidates. Thus the system can retrieve candidates quickly and correctly by utilizing the parallelism and association ability of NNs. In addition, the system has learning capability: it can automatically extract features of a user's drawn sketch during the retrieval phase and can store them as additional information to improve the performance. The software for querying, including efficient graphical user interfaces, has been implemented and tested. The effectiveness of the proposed system has been investigated through various experimental tests. 相似文献
14.
Summary Simulated neural networks are described which aid the assignment of protein NMR spectra. A network trained to recognize amino acid type from TOCSY data was trained on 148 assigned spin systems from E. coli acyl carrier proteins (ACPs) and tested on spin systems from spinach ACP, which has a 37% sequence homology with E. coli ACP and a similar secondary structure. The output unit corresponding to the correct amino acid is one of the four most activated units in 83% of the spin systems tested. The utility of this information is illustrated by a second network which uses a constraint satisfaction algorithm to find the best fit of the spin systems to the amino acid sequence. Application to a stretch of 20 amino acids in spinach ACP results in 75% correct sequential assignment. Since the output of the amino acid type identification network can be coupled with a variety of sequential assignment strategies, the approach offers substantial potential for expediting assignment of protein NMR spectra. 相似文献
15.
Prediction of beta-turns in proteins using neural networks 总被引:7,自引:0,他引:7
The use of neural networks to improve empirical secondary structure prediction is explored with regard to the identification of the position and conformational class of beta-turns, a four-residue chain reversal. Recently an algorithm was developed for beta-turn predictions based on the empirical approach of Chou and Fasman using different parameters for three classes (I, II and non-specific) of beta-turns. In this paper, using the same data, an alternative approach to derive an empirical prediction method is used based on neural networks which is a general learning algorithm extensively used in artificial intelligence. Thus the results of the two approaches can be compared. The most severe test of prediction accuracy is the percentage of turn predictions that are correct and the neural network gives an overall improvement from 20.6% to 26.0%. The proportion of correctly predicted residues is 71%, compared to a chance level of about 58%. Thus neural networks provide a method of obtaining more accurate predictions from empirical data than a simpler method of deriving propensities. 相似文献
16.
On-line prediction of fermentation variables using neural networks 总被引:10,自引:0,他引:10
This article presents an introduction to the use of neural network computational algorithms for the dynamic modeling of bioprocesses. The dynamic neural model is used for the prediction of key fermentation variables. This relatively hew method is compared with a more traditional prediction technique to judge its performance for prediction. Illustrative simulation results of a continuous stirred tank fermentor are used for this comparison. It is shown that neural network models are accurate with a certain degree of noise immunity. They offer the distinctive ability over more traditional methods to learn very naturally complex relationships without requiring the knowledge of the model structure. 相似文献
17.
18.
M Caron A Faure J Ohanessian J Delrieu 《Archives internationales de physiologie et de biochimie》1985,93(2):113-116
Today, an increasing number of lectins are available for a diagnostical purpose. Using an autoanalyser, it is possible to study and to measure the agglutination of red blood cells, one of their main properties. 相似文献
19.
20.
An incorrect version of Figure 3 was published in the abovearticle, the corrected version is reproduced below. 相似文献