首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adipocyte-derived hormone leptin plays an important role as a relayer of nutritional status to several organ systems. Evidence is accumulating that leptin plays an important role in the adequate functioning and maintenance of the immune system. Here we show that leptin induces sustained phosphorylation of p38 MAP kinase in human peripheral blood mononuclear cells (PBMCs). We show furthermore that leptin induces two routes to phosphorylation of the 40S ribosomal protein S6, one is activation of the p90 ribosomal S6 kinase (RSK) via the MEK/p42/p44 MAP kinase pathway, the other is via activation of p70 S6 kinase. Thus, these results give new insight in the mechanism that underlies the immunomodulatory effects of leptin.  相似文献   

2.
A new link in the chain from amino acids to mTORC1 activation   总被引:1,自引:0,他引:1  
A recent study reveals that the scaffold protein p62 plays a role in linking nutritional cues (amino acids) to the activation of mammalian target of rapamycin complex 1 (mTORC1), a protein kinase that controls cell size and proliferation.  相似文献   

3.

Background  

p27(Kip1) is a cyclin-dependent kinase inhibitor. When up-regulated, p27 inhibits G1-to-S phase transition of the cell cycle. This report addresses the question of whether various nutritional and chemopreventive anti-cancer agents up-regulate the expression of p27 in preneoplastic and neoplastic cells.  相似文献   

4.
Temperature-sensitive pat1 mutants of the fission yeast Schizosaccharomyces pombe can be induced to undergo meiosis at the restrictive temperature, irrespective of the mat1 configuration and the nutritional conditions. Using a combination of exit from stationary phase and thermal inactivation of the 52-kilodalton protein kinase that is encoded by the pat1 (also called ran1) gene, highly synchronous meiotic cultures were obtained. Synthesis and tyrosyl phosphorylation of p34cdc2 was evident during meiotic G1 and S phases. During this period there was increased expression of p105wee1, a protein kinase implicated in the tyrosyl phosphorylation of p34cdc2. Following a relatively brief G2 period, during which a reduction in the steady-state level of p105wee1 occurred, there was an approximately 19-fold increase in the histone H1 phosphotransferase activity of p34cdc2. Only a single peak of histone H1 kinase activation was observed, which implies that unlike meiosis in amphibians and echinoderms, p34cdc2 is functional only during one of the meiotic divisions in S. pombe, presumably meiosis II. Stimulation of the kinase activity of p34cdc2 was associated with its tyrosyl dephosphorylation. This is analogous to mitotic M phase and suggests parallels in the mechanism of activation of p34cdc2 during mitosis and one of the meiotic divisions in S. pombe.  相似文献   

5.
Lipid-derived signals are central to regulating a multitude of cellular processes but, in plants, little is known of the downstream signalling pathways. The Arabidopsis 3-phosphoinositide-dependent protein kinase (PDK1) could couple lipid signals to the activation of several protein kinases of the so-called AGC kinase family. The Arabidopsis AGC kinases contain sequence motives required for the docking of PDK1 and phosphorylation of their activation loop in the kinase catalytic domain. It is becoming evident that specific members of the AGC kinases are implicated in key growth signalling pathways. For example, Arabidopsis p70(S6K) might be a nodal point able to integrate hormonal and developmental signals with nutritional inputs, together with the Arabidopsis Target of Rapamycin (TOR) protein.  相似文献   

6.
L Brizuela  G Draetta    D Beach 《The EMBO journal》1987,6(11):3507-3514
cdc2+ encodes a protein kinase that is required during both G1 and G2 phases of the cell division cycle in fission yeast. suc1+ is an essential gene that was originally identified as a plasmid-borne sequence that could rescue certain temperature-sensitive cdc2 mutants. To investigate the role of the suc1+ gene product in the cell cycle p13suc1 has been expressed in Escherichia coli and purified. An immunoaffinity purified anti-p13suc1 polyclonal serum has been prepared and used to identify p13suc1 in fission yeast. The abundance of this protein did not alter either during the cell cycle or during entry into stationary phase. p13suc1 was found in yeast lysates in a complex with the cdc2+ gene product. Approximately 5% of cellular p34cdc2 was associated with p13suc1, and this fraction of p34cdc2 was active as a protein kinase. The stability of the complex was disrupted in yeast strains carrying temperature-sensitive alleles of cdc2 that are suppressible by overexpression of suc1+. The level of association between p13suc1 and p34cdc2 was not affected by cell cycle arrest in adverse nutritional conditions. p13suc1 is not a substrate of the p34cdc2 protein kinase. We propose instead that it acts as a regulatory component of p34cdc2 that facilitates interaction with other proteins.  相似文献   

7.
SIK2在脂质和糖代谢及应激反应中的调节作用   总被引:1,自引:0,他引:1  
  相似文献   

8.
Signaling mucins are cell adhesion molecules that activate RAS/RHO guanosine triphosphatases and their effector mitogen-activated protein kinase (MAPK) pathways. We found that the Saccharomyces cerevisiae mucin Msb2p, which functions at the head of the Cdc42p-dependent MAPK pathway that controls filamentous growth, is processed into secreted and cell-associated forms. Cleavage of the extracellular inhibitory domain of Msb2p by the aspartyl protease Yps1p generated the active form of the protein by a mechanism incorporating cellular nutritional status. Activated Msb2p functioned through the tetraspan protein Sho1p to induce MAPK activation as well as cell polarization, which involved the Cdc42p guanine nucleotide exchange factor Cdc24p. We postulate that cleavage-dependent activation is a general feature of signaling mucins, which brings to light a novel regulatory aspect of this class of signaling adhesion molecule.  相似文献   

9.
10.

Background  

p27(Kip1) is a cyclin-dependent kinase inhibitor that inhibits G1-to-S phase transition of the cell cycle. It is known that a relatively large number of nutritional and chemopreventive anti-cancer agents specifically up-regulate expression of p27 without directly affecting the expression of other G1-to-S phase cell cycle regulatory proteins including p21(Cip1Waf1). However, the upstream molecular signaling pathways of how these agents up-regulate the expression of p27 have not been well characterized. The objective of this study was to identify such pathways in human breast cancer cells in vitro using 4-hydroxytamoxifen, dexamethasone, and various retinoic acids as examples of such anti-cancer agents.  相似文献   

11.
W A Whalen  J H Yoon  R Shen  R Dhar 《Genetics》1999,152(3):827-838
We have isolated a mutation in nup184(nup184-1) that is synthetically lethal with the mRNA export defective rae1-167 mutation in Schizosaccharomyces pombe. The consequence of the synthetic lethality is a defect in mRNA export. The predicted Nup184p is similar to Nup188p of Saccharomyces cerevisiae, and a Nup184p-GFP fusion localizes to the nuclear periphery in a punctate pattern. The Deltanup184 null mutant is viable and also is synthetically lethal with rae1-167. In a rae1(+) background, both the nup184-1 and Deltanup184 mutations confer sensitivity to growth in nutrient-rich medium (YES) that is accompanied by nuclear poly(A)+ RNA accumulation. Removal of the cAMP-dependent protein kinase, Pka1p, relieved the growth and mRNA export defects of nup184 mutants when grown in nutrient-rich medium. The activation of Pka1p is necessary, but not sufficient, to cause the severe poly(A)+ RNA export defects when nup184 mutant cells are incubated in YES, suggesting nutritional status can also regulate poly(A)+ RNA export. Our results suggest that the regulation of poly(A)+ RNA export by Pka1p kinase appears to be indirect, via a translation-dependent step, but post-translationally in response to YES.  相似文献   

12.
Recent studies indicate that zinc activates p70 S6 kinase (p70(S6k)) by a mechanism involving phosphatidylinositol 3-kinase (PI 3-kinase) and Akt (protein kinase B). Here it is shown that phenanthroline, a zinc and heavy metal chelator, inhibited both amino acid- and insulin-stimulated phosphorylation of p70(S6k). Both amino acid and insulin activations of p70(S6k) involve a rapamycin-sensitive step that involves the mammalian target of rapamycin (mTOR, also known as FRAP and RAFT). However, in contrast to insulin, amino acids activate p70(S6k) by an unknown PI 3-kinase- and Akt-independent mechanism. Thus the effects of chelator on amino acid activation of p70(S6k) were surprising. For this reason, we tested the hypothesis that zinc directly regulates mTOR activity, independently of PI 3-kinase activation. In support of this, basal and amino acid stimulation of p70(S6k) phosphorylation was increased by zinc addition to the incubation media. Furthermore, the protein kinase activities of mTOR immunoprecipitated from rat brain lysates were stimulated two- to fivefold by 10-300 microM Zn2+ in the presence of an excess of either Mn2+ or Mg2+, whereas incubation with 1,10-phenanthroline had no effect. These findings indicate that Zn2+ regulates, but is not absolutely required for, mTOR protein kinase activity. Zinc also stimulated a recombinant human form of mTOR. The stimulatory effects of Zn2+ were maximal at approximately 100 microM but decreased and became inhibitory at higher physiologically irrelevant concentrations. Micromolar concentrations of other divalent cations, Ca2+, Fe2+, and Mn2+, had no effect on the protein kinase activity of mTOR in the presence of excess Mg2+. Our results and the results of others suggest that zinc acts at multiple steps in amino acid- and insulin cell-signaling pathways, including mTOR, and that the additive effects of Zn2+ on these steps may thereby promote insulin and nutritional signaling.  相似文献   

13.
14.
15.
Reflecting its critical role in integrating cell growth and division with the cellular nutritional environment, the mammalian target of rapamycin *(mTOR) is a highly conserved downstream effector of the phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B) signaling pathway. mTOR activates both the 40S ribosomal protein S6 kinase (p70s6k) and the eukaryotic initiation factor 4E-binding protein-1. As a consequence of inhibiting its downstream messengers, mTOR inhibitors prevent cyclin-dependent kinase (CDK) activation, inhibit retinoblastoma protein phosphorylation, and accelerate the turnover of cyclin D1, leading to a deficiency of active CDK4/cyclin D1 complexes, all of which may help cause GI phase arrest. Constitutive activation of the PI3K/Akt kinases occur in human leukemias. FLT3, VEGF, and BCR-ABL mediate their activities via mTOR. New rapamycin analogs including CCI-779, RAD001, and AP23573, are entering clinical studies for patients with hematologic malignancies.  相似文献   

16.
17.
18.
The mammalian target of rapamycin (mTOR) controls cell growth in response to amino acids and growth factors, in part by regulating p70 S6 kinase alpha (p70 alpha) and eukaryotic initiation factor 4E binding protein 1 (4EBP1). Raptor (regulatory associated protein of mTOR) is a 150 kDa mTOR binding protein that is essential for TOR signaling in vivo and also binds 4EBP1 and p70alpha through their respective TOS (TOR signaling) motifs, a short conserved segment previously shown to be required for amino acid- and mTOR-dependent regulation of these substrates in vivo. Raptor appears to serve as an mTOR scaffold protein, the binding of which to the TOS motif of mTOR substrates is necessary for effective mTOR-catalyzed phosphorylation. Further understanding of regulation of the mTOR-raptor complex in response to the nutritional environment would require identification of the interplay between the mTOR-raptor complex and its upstream effectors such as the protein products of tumor suppressor gene tuberous sclerosis complexes 1 and 2, and the Ras-related small G protein Rheb.  相似文献   

19.
20.
Trypanosoma cruzi: Oxidative stress induces arginine kinase expression   总被引:1,自引:0,他引:1  
Trypanosoma cruzi arginine kinase is a key enzyme in cell energy management and is also involved in pH and nutritional stress response mechanisms. T. cruzi epimastigotes treated with hydrogen peroxide presented a time-dependent increase in arginine kinase expression, up to 10-fold, when compared with untreated parasites. Among other oxidative stress-generating compounds tested, only nifurtimox produced more than 2-fold increase in arginine kinase expression. Moreover, parasites overexpressing arginine kinase showed significantly increased survival capability during hydrogen peroxide exposure. These findings suggest the participation of arginine kinase in oxidative stress response systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号