共查询到20条相似文献,搜索用时 24 毫秒
1.
Estimation of the correlation between nutrient intake measures under restricted sampling 总被引:2,自引:0,他引:2
Food frequency questionnaires (FFQs) are commonly used to assess dietary intake in epidemiologic research. To evaluate the FFQ reliability, the commonly used approach is to estimate the correlation coefficient between the data given in FFQ and those in food records (for example, 4-day food records [4DFR]) for nutrients of interest. However, in a dietary intervention study, a criterion for eligibility may be to select participants who have baseline FFQ-measured dietary intake of percent energy from fat above a prespecified quantity. Other instruments, such as the 4DFR, may be subsequently administrated only to eligible participants. Under these circumstances, analysis without adjusting for the restricted population will usually lead to biased estimation of correlation coefficients and other parameters of interest. In this paper, we apply likelihood-based and multiple imputation (MI) methods to accommodate such incomplete data obtained as a result of the study design. A simulation study is conducted to examine finite sample performance of various estimators. We note that both the MI estimate and the maximum likelihood (ML) estimate based on a bivariate-normal model are not sensitive to departures from this normality assumption. This led us to investigate robustness properties of the ML estimator analytically. We present some data analyses from a dietary assessment study from the Women's Health Initiative to illustrate the methods. 相似文献
2.
When some of the records used to estimate the imputation modelsin multiple imputation are not used or available for analysis,the usual multiple imputation variance estimator has positivebias. We present an alternative approach that enables unbiasedestimation of variances and, hence, calibrated inferences insuch contexts. First, using all records, the imputer samplesm values of the parameters of the imputation model. Second,for each parameter draw, the imputer simulates the missing valuesfor all records n times. From these mn completed datasets, theimputer can analyse or disseminate the appropriate subset ofrecords. We develop methods for interval estimation and significancetesting for this approach. Methods are presented in the contextof multiple imputation for measurement error. 相似文献
3.
Wang CY 《Biometrics》2000,56(1):106-112
Consider the problem of estimating the correlation between two nutrient measurements, such as the percent energy from fat obtained from a food frequency questionnaire (FFQ) and that from repeated food records or 24-hour recalls. Under a classical additive model for repeated food records, it is known that there is an attenuation effect on the correlation estimation if the sample average of repeated food records for each subject is used to estimate the underlying long-term average. This paper considers the case in which the selection probability of a subject for participation in the calibration study, in which repeated food records are measured, depends on the corresponding FFQ value, and the repeated longitudinal measurement errors have an autoregressive structure. This paper investigates a normality-based estimator and compares it with a simple method of moments. Both methods are consistent if the first two moments of nutrient measurements exist. Furthermore, joint estimating equations are applied to estimate the correlation coefficient and related nuisance parameters simultaneously. This approach provides a simple sandwich formula for the covariance estimation of the estimator. Finite sample performance is examined via a simulation study, and the proposed weighted normality-based estimator performs well under various distributional assumptions. The methods are applied to real data from a dietary assessment study. 相似文献
4.
Motivated by an important biomarker study in nutritional epidemiology, we consider the combination of the linear mixed measurement error model and the linear seemingly unrelated regression model, hence Seemingly Unrelated Measurement Error Models. In our context, we have data on protein intake and energy (caloric) intake from both a food frequency questionnaire (FFQ) and a biomarker, and wish to understand the measurement error properties of the FFQ for each nutrient. Our idea is to develop separate marginal mixed measurement error models for each nutrient, and then combine them into a larger multivariate measurement error model: the two measurement error models are seemingly unrelated because they concern different nutrients, but aspects of each model are highly correlated. As in any seemingly unrelated regression context, the hope is to achieve gains in statistical efficiency compared to fitting each model separately. We show that if we employ a "full" model (fully parameterized), the combination of the two measurement error models leads to no gain over considering each model separately. However, there is also a scientifically motivated "reduced" model that sets certain parameters in the "full" model equal to zero, and for which the combination of the two measurement error models leads to considerable gain over considering each model separately, e.g., 40% decrease in standard errors. We use the Akaike information criterion to distinguish between the two possibilities, and show that the resulting estimates achieve major gains in efficiency. We also describe theoretical and serious practical problems with the Bayes information criterion in this context. 相似文献
5.
Most models for incomplete data are formulated within the selection model framework. This paper studies similarities and differences of modeling incomplete data within both selection and pattern-mixture settings. The focus is on missing at random mechanisms and on categorical data. Point and interval estimation is discussed. A comparison of both approaches is done on side effects in a psychiatric study. 相似文献
6.
This paper outlines a multiple imputation method for handling missing data in designed longitudinal studies. A random coefficients model is developed to accommodate incomplete multivariate continuous longitudinal data. Multivariate repeated measures are jointly modeled; specifically, an i.i.d. normal model is assumed for time-independent variables and a hierarchical random coefficients model is assumed for time-dependent variables in a regression model conditional on the time-independent variables and time, with heterogeneous error variances across variables and time points. Gibbs sampling is used to draw model parameters and for imputations of missing observations. An application to data from a study of startle reactions illustrates the model. A simulation study compares the multiple imputation procedure to the weighting approach of Robins, Rotnitzky, and Zhao (1995, Journal of the American Statistical Association 90, 106-121) that can be used to address similar data structures. 相似文献
7.
Marques TA 《Biometrics》2004,60(3):757-763
Line transect sampling is one of the most widely used methods for animal abundance assessment. Standard estimation methods assume certain detection on the transect, no animal movement, and no measurement errors. Failure of the assumptions can cause substantial bias. In this work, the effect of error measurement on line transect estimators is investigated. Based on considerations of the process generating the errors, a multiplicative error model is presented and a simple way of correcting estimates based on knowledge of the error distribution is proposed. Using beta models for the error distribution, the effect of errors and of the proposed correction is assessed by simulation. Adequate confidence intervals for the corrected estimates are obtained using a bootstrap variance estimate for the correction and the delta method. As noted by Chen (1998, Biometrics 54, 899-908), even unbiased estimators of the distances might lead to biased density estimators, depending on the actual error distribution. In contrast with the findings of Chen, who used an additive model, unbiased estimation of distances, given a multiplicative model, lead to overestimation of density. Some error distributions result in observed distance distributions that make efficient estimation impossible, by removing the shoulder present in the original detection function. This indicates the need to improve field methods to reduce measurement error. An application of the new methods to a real data set is presented. 相似文献
8.
Longitudinal data often encounter missingness with monotone and/or intermittent missing patterns. Multiple imputation (MI) has been popularly employed for analysis of missing longitudinal data. In particular, the MI‐GEE method has been proposed for inference of generalized estimating equations (GEE) when missing data are imputed via MI. However, little is known about how to perform model selection with multiply imputed longitudinal data. In this work, we extend the existing GEE model selection criteria, including the “quasi‐likelihood under the independence model criterion” (QIC) and the “missing longitudinal information criterion” (MLIC), to accommodate multiple imputed datasets for selection of the MI‐GEE mean model. According to real data analyses from a schizophrenia study and an AIDS study, as well as simulations under nonmonotone missingness with moderate proportion of missing observations, we conclude that: (i) more than a few imputed datasets are required for stable and reliable model selection in MI‐GEE analysis; (ii) the MI‐based GEE model selection methods with a suitable number of imputations generally perform well, while the naive application of existing model selection methods by simply ignoring missing observations may lead to very poor performance; (iii) the model selection criteria based on improper (frequentist) multiple imputation generally performs better than their analogies based on proper (Bayesian) multiple imputation. 相似文献
9.
When performing multi-component significance tests with multiply-imputeddatasets, analysts can use a Wald-like test statistic and areference F-distribution. The currently employed degrees offreedom in the denominator of this F-distribution are derivedassuming an infinite sample size. For modest complete-data samplesizes, this degrees of freedom can be unrealistic; for example,it may exceed the complete-data degrees of freedom. This paperpresents an alternative denominator degrees of freedom thatis always less than or equal to the complete-data denominatordegrees of freedom, and equals the currently employed denominatordegrees of freedom for infinite sample sizes. Its advantagesover the currently employed degrees of freedom are illustratedwith a simulation. 相似文献
10.
Covariate measurement error in generalized linear models 总被引:1,自引:0,他引:1
11.
Ofer Harel Hwan Chung Diana Miglioretti 《Biometrical journal. Biometrische Zeitschrift》2013,55(4):541-553
Latent class regression (LCR) is a popular method for analyzing multiple categorical outcomes. While nonresponse to the manifest items is a common complication, inferences of LCR can be evaluated using maximum likelihood, multiple imputation, and two‐stage multiple imputation. Under similar missing data assumptions, the estimates and variances from all three procedures are quite close. However, multiple imputation and two‐stage multiple imputation can provide additional information: estimates for the rates of missing information. The methodology is illustrated using an example from a study on racial and ethnic disparities in breast cancer severity. 相似文献
12.
13.
Battauz M 《Biometrical journal. Biometrische Zeitschrift》2011,53(3):411-425
Likelihood analysis for regression models with measurement errors in explanatory variables typically involves integrals that do not have a closed-form solution. In this case, numerical methods such as Gaussian quadrature are generally employed. However, when the dimension of the integral is large, these methods become computationally demanding or even unfeasible. This paper proposes the use of the Laplace approximation to deal with measurement error problems when the likelihood function involves high-dimensional integrals. The cases considered are generalized linear models with multiple covariates measured with error and generalized linear mixed models with measurement error in the covariates. The asymptotic order of the approximation and the asymptotic properties of the Laplace-based estimator for these models are derived. The method is illustrated using simulations and real-data analysis. 相似文献
14.
15.
We propose a new method for using validation data to correct self-reported weight and height in surveys that do not measure respondents. The standard correction in prior research regresses actual measures on reported values using an external validation dataset, and then uses the estimated coefficients to predict actual measures in the primary dataset. This approach requires the strong assumption that the expectations of measured weight and height conditional on the reported values are the same in both datasets. In contrast, we use percentile ranks rather than levels of reported weight and height. Our approach requires the weaker assumption that the conditional expectations of actual measures are increasing in reported values in both samples. This makes our correction more robust to differences in measurement error across surveys as long as both surveys represent the same population. We examine three nationally representative datasets and find that misreporting appears to be sensitive to differences in survey context. When we compare predicted BMI distributions using the two validation approaches, we find that the standard correction is affected by differences in misreporting while our correction is not. Finally, we present several examples that demonstrate the potential importance of our correction for future econometric analyses and estimates of obesity rates. 相似文献
16.
17.
We introduce sequential testing procedures for the planning and analysis of reliability studies to assess an exposure's measurement error. The designs allow repeated evaluation of reliability of the measurements and stop testing if early evidence shows the measurement error is within the level of tolerance. Methods are developed and critical values tabulated for a number of two-stage designs. The methods are exemplified using an example evaluating the reliability of biomarkers associated with oxidative stress. 相似文献
18.
Budtz-Jørgensen E 《Biostatistics (Oxford, England)》2007,8(4):675-688
While epidemiological data typically contain a multivariate response and often also multiple exposure parameters, current methods for safe dose calculations, including the widely used benchmark approach, rely on standard regression techniques. In practice, dose-response modeling and calculation of the exposure limit are often based on the seemingly most sensitive outcome. However, this procedure ignores other available data, is inefficient, and fails to account for multiple testing. Instead, risk assessment could be based on structural equation models, which can accommodate both a multivariate exposure and a multivariate response function. Furthermore, such models will allow for measurement error in the observed variables, which is a requirement for unbiased estimation of the benchmark dose. This methodology is illustrated with the data on neurobehavioral effects in children prenatally exposed to methylmercury, where results based on standard regression models cause an underestimation of the true risk. 相似文献
19.
20.
On the geometry of measurement error models 总被引:2,自引:0,他引:2