首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rates of phosphatidate synthesis from dihydroxyacetone phosphate via acyl dihydroxyacetone phosphate or glycerol phosphate are compared in homogenates of 13 tissues, most of which are deficient in glycerol phosphate dehydrogenase (EC 1.1.1.8). In all tissues examined, dihydroxyacetone phosphate entered phosphatidate more rapidly via acyl dihydroxyacetone phosphate than via glycerol phosphate. Tissues with a relatively low rate of phosphatidate synthesis via glycerol phosphate, showed no compensating increase in the rate of synthesis via acyl dihydroxyacetone phosphate. The rates at which tissue homogenates synthesize phosphatidate from dihydroxyacetone phosphate via glycerol phosphate increase as glycerol phosphate dehydrongenase increase. Both glycerol phosphate dehydrogenase and glycerol phosphate: acyl CoA acyltransferase (EC 2.3.1.15) are more active than dihydroxyacetone phosphate : acyl CoA acyltransferase (EC 2.3.1.42). Thus, all the tissue homogenates possessed an apparently greater capability to synthesize phosphatidate via glycerol phosphate than via acyl dihydroxyacetone phosphate, but did not express this potential. This result is discussed in relation to in vivo substrate limitations.  相似文献   

2.
R Jeanjean  A Hourmant  G Ducet 《Biochimie》1975,57(3):383-390
The effect of Sulphydryl reagents have been investigated. pCMB inhibits the transport of phosphate in Chlorella pyrenoidosa. This inhibition is immediate and does not change as a function of time of incubation. This inhibition affects non starved and starved cells (phosphate omitted). pCMPS and Mersalyl act in the same manner as pCMB. When these compounds are used at low concentrations, inhibition of phosphate uptake is observed only in starved cells. The substrate (phosphate) cannot provide protection against this inhibition. NEM inhibits phosphate uptake and this inhibition increases as a function of time of incubation. When the time of incubation is very short (about 15 seconds) the effects seems to be superficial and NEM reacts with SH groups involved in the transport system. When phosphate is present (for 15 seconds of incubation with NEM) the inhibition is less important than when phosphate is omitted. The substrate protects against NEM, but this protection disappears as the incubation with NEM is prolonged. NEM inhibits phosphate uptake in non starved and starved cells, however, it is observed that the inhibition is less important in starved cells than in non starved cells. The authors conclude that two kinds of SH groups might exist in the phosphate transport system, one reacting with pCMB and the other with NEM.  相似文献   

3.
New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
The mechanism involved in the cellular phosphate response of Saccharomyces cerevisiae forms part of the PHO pathway, which upon expression allows a co-ordinated cellular response and adaptation to changes in availability of external phosphate. Although genetic studies and analyses of the S. cerevisiae genome have produced much information on the components of the PHO pathway, little is known about how cells sense the environmental phosphate level and the mechanistic regulation of phosphate acquisition. Recent studies emphasize different levels in phosphate sensing and signalling in response to external phosphate fluctuations. This review integrates all these findings into a model involving rapid and long-term effects of phosphate sensing and signalling in S. cerevisiae. The model describes in particular how yeast cells are able to adjust phosphate acquisition by integrating the status of the intracellular phosphate pools together with the extracellular phosphate concentration.  相似文献   

4.
This report gives a comparison of the specificity of phosphate translocators in various plastids. Whereas the phosphate translocator of the C3 plant spinach mediates a counter exchange between inorganic phosphate, dihydroxyacetone phosphate, and 3-phosphoglycerate, the phosphate translocators in chloroplasts from C4 and CAM plants transport phosphoenolpyruvate in addition to the above mentioned metabolites. In plastids from pea roots the phosphate translocator also transports glucose 6-phosphate. This diversity of phosphate translocators is discussed in view of the special functions of the various plastids.  相似文献   

5.
Effects of parathyroid hormone (PTH), low phosphate environment, and 12-O-tetradecanoyl phorbol-13-acetate (TPA) on the phosphate reabsorption by the renal tubular cells from mutant hemizygous hypophosphatemic (Hyp/Y) mice and their littermates (+/Y) were studied using a phosphate accumulation system which had been developed recently. This system mimics phosphate transport at the renal tubules. When cultured in a normal phosphate medium, the characteristics of the phosphate accumulation by Hyp cells was almost identical with that by normal cells; a PTH-induced inhibition and a TPA-induced stimulation of phosphate accumulation. However, when preincubated in a low phosphate medium, the accumulation of phosphate by normal cells increased significantly, while that by Hyp cells did not. These results indicate that the adaptation to the low phosphate environment is defective in Hyp cells and it may be one of the cause of renal phosphate leakage in the Hyp mouse.  相似文献   

6.
玉米幼苗种子根局部供磷可明显改变根系的形态。供磷区侧根生长增加,无磷区侧极生长减少。供磷区1次、2次侧根长度与2次侧根数量明显增加;而1次侧根数量则不增加。供磷区缩小时,根系生长加快,单位根区磷吸收速率增加,但单位根重磷吸收速率的增加不很明显。磷局部供应植株主要通过供磷区根系的生长来增加磷的吸收,以满足植株对磷的需求。局部供磷植株中转运到供磷根区的光合产物明显多于无磷根区。  相似文献   

7.
一个高亲和力水稻根系磷转运蛋白候选基因片段的克隆   总被引:4,自引:0,他引:4  
磷是影响作物产量的主要限制因子之一,植物在缺磷条件下主要高亲和力的磷转蛋白对磷进行有效吸收,利用RT-PCR技术,经过缺磷处理水稻京系17(Oryza sativa L.ssp. japonica cv.Jingxi17)的根系中的克隆到一个1178bp的磷转 蛋白基因片段OjPT1,测序后与GenBank中的已知序列进行氨基酸水平上的同源性比较,结果表明,该序列与拟南芥、马铃薯、番茄、苜蓿、长春花等植物的同源性分别在70%左右,并且与酵母、VA菌和子囊属脉胞菌等的磷转运蛋白也表出出较高的同源性。通过RT-PCR结果证明,该基因片段为诱导表达,该基因已被GenBan接收(收录号为AF239619)。  相似文献   

8.
The aim of the investigations was to identify the main process controlling the rather low phosphate concentration in the water of Lake Balaton. Three processes were taken into consideration: a) phosphate uptake by algae, b) coprecipitation with biogenic lime, and c) adsorption on suspended sediment particles. A plexiglass box open at the bottom was placed in the shallow water with its sides extending into the sediment. The water in the box was stirred. When phosphate alone was added to the water in the box, its concentration decreased very rapidly. On the other hand, if NaOCl was also added in order to kill algae and bacteria, the phosphate concentration remained constant. This proves the priority of life processes in phosphate removal. In the next experiment phosphate and EDTA-Na2 were added simultaneously to the water in the box. The complexing agent prevented biogenic lime formation but did not influence the rapid phosphorus removal. This fact indicates that the main process involved in phosphate control is direct uptake by algae. The same conclusion was obtained in laboratory experiments where labelled phosphate was added to the bottles containing Lake Balaton water. It was demonstrated by the photo-oxidation technique that the phosphate removed from the water was incorporated into the organic particulate matter.  相似文献   

9.
Pig plasma benzylamine oxidase is a protein containing cupric copper and pyridoxal phosphate. The pyridoxal phosphate is stably linked to the enzyme. Discrepancies in the numbers of active sites per molecule of enzyme are reported in the literature. This paper shows that the fully active pure enzyme contains 3 mol of pyridoxal phosphate per mol, whereas enzymes with a lower specific activity are shown by titration with phenylhydrazine to have a lower pyrdoxal phosphate content.  相似文献   

10.
T Thiel 《Journal of bacteriology》1988,170(3):1143-1147
Cells of the cyanobacterium Anabaena variabilis starved for phosphate for 3 days took up phosphate at about 100 times the rate of unstarved cells. Kinetic data suggested that a new transport system had been induced by starvation for phosphate. The inducible phosphate transport system was quickly repressed by addition of Pi. Phosphate-starved cells were more sensitive to the toxic effects of arsenate than were unstarved cells, but phosphate could alleviate some of the toxicity. Arsenate was a noncompetitive inhibitor of phosphate transport; however, the apparent Ki values were high, particularly for phosphate-replete cells. Preincubation of phosphate-starved cells with arsenate caused subsequent inhibition of phosphate transport, suggesting that intracellular arsenate inhibited phosphate transport. This effect was not seen in phosphate-replete cells.  相似文献   

11.

Aims

Enormous quantities of phosphate have been applied to world soils, yet we know little about effects of phosphate status on sorption properties.

Methods

We measured sorption and desorption of phosphate on soils from fertilized tea plantations from northern India and compared them with unfertilized soils. We also incubated phosphate at high temperature with a previously unfertilized soil and measured the effects.

Results

Sorption of phosphate was less marked on soils of high phosphate status whether derived from inherent fertility or fertilizer application. This occurred because high phosphate status made the surface charge on the reacting surfaces more negative. Phosphate status also affected desorption. The higher the phosphate status, the smaller the difference between sorption and desorption curves. This occurred because on soils of high phosphate status the pathways by which adsorbed anions diffuse were saturated and the slow reaction that follows adsorption was stopped.

Conclusions

When low-phosphate soils are first fertilized, it is necessary to supply more phosphate than is removed in produce. However, after long-term phosphate fertilization, it is sufficient to only replace phosphate lost in produce. We need to find how much phosphorus it takes to reach this state and how many of the world’s soils have already reached it.  相似文献   

12.
A thick-film phosphate biosensor based on hydrogel immobilized pyruvate oxidase (POD) has been developed for rapid phosphate process control monitoring in an experimental sequencing batch reactor (SBR) system. We have employed a phosphate biosensor in an off-line monitoring of phosphate concentrations in a bench scale SBR. Measurements with biosensor show a good correlation (r2=0.98) with those of commercial colorimetric phosphate testing kits. The signal response time was 1 min with a detection limit of 5 microM. The biosensor method showed a good operational stability, needed less experimental procedures and a small sample size (approximately 20 microl). This allows its practical application for rapid phosphate measurements to obtain real time process data in a SBR system.  相似文献   

13.
Quantitation of individual phospholipids separated by HPLC from tissue extracts by colorimetric analysis of phosphate was investigated. Elution of inorganic phosphate and breakthrough of lecithin were determined using radioisotopes. A substance which interfered with sample phosphate determinations was found in the column eluant, and a method to minimize its effect was developed. This method allows accurate quantitation of individual phospholipids present at a minimum of 20 nmol phosphate.  相似文献   

14.
Phosphate is required for terminal differentiation of hypertrophic chondrocytes during postnatal growth plate maturation. In vitro models of chondrocyte differentiation demonstrate that 7 mM phosphate, a concentration analogous to that of the late gestational fetus, activates the mitochondrial apoptotic pathway in hypertrophic chondrocytes. This raises the question as to whether extracellular phosphate modulates chondrocyte differentiation and apoptosis during embryonic endochondral bone formation. To address this question, we performed investigations in the mouse metatarsal culture model that recapitulates in vivo bone development. Metatarsals were cultured for 4, 8, and 12 days with 1.25 and 7 mM phosphate. Metatarsals cultured with 7 mM phosphate showed a decrease in proliferation compared to those cultured in 1.25 mM phosphate. This decrease in proliferation was accompanied by an early enhancement in hypertrophic chondrocyte differentiation, associated with an increase in FGF18 expression. By 8 days in culture, an increase caspase‐9 activation and apoptosis of hypertrophic chondrocytes was observed in the metatarsals cultured in 7 mM phosphate. Immunohistochemical analyses of embryonic bones demonstrated activation of caspase‐9 in hypertrophic chondrocytes, associated with vascular invasion. Thus, these investigations demonstrate that phosphate promotes chondrocyte differentiation during embryonic development and implicate a physiological role for phosphate activation of the mitochondrial apoptotic pathway during embryonic endochondral bone formation. J. Cell. Biochem. 108: 668–674, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The phosphate uptake mechanism   总被引:11,自引:0,他引:11  
The slow rate of diffusion of phosphate in soil results in a zone of depletion of phosphate ions in solution around the roots of plants in low phosphate soils. Transfer of phosphate to the site of uptake into the root symplasm limits phosphate uptake in such soils. This transfer involves movement across the depletion zone and through the root apoplasm. The apoplasm is made up of the cell walls of epidermal and cortical cells, together with the associated intercellular spaces. Although the pores in the open latticework of these cell walls permit movement of nutrients around cells, they increase the path length across which phosphate ions have to diffuse. The structural components and net negative charges of the cell walls also influence the effective concentrations of phosphate in the apoplasm. This concentration may be further modified by excreted organic compounds around cell walls and the presence of micro-organisms that use such compounds as carbon sources. A membrane on the inner surface of the cell wall, the plasmalemma, separates the apoplasm from the symplasm. Uptake of nutrients into the root symplasm occurs through transporter proteins embedded in this membrane. Understanding of the mechanisms by which phosphate is transported across the plasmalemma into the plant symplasm has advanced considerably over the past 4 years due to the application of molecular techniques. Genes encoding the transporters involved in this process have been isolated from a number of plant species. These transporters belong to a family of membrane proteins characterized by having 12 membrane-spanning domains arranged in a '6+6' configuration. H2PO4 ions, together with protons, are transported through this protein. This transport process is driven by the potential across the membrane maintained by the action of a H+-ATPase, the `proton pump', that extrudes protons to the outer surface of the membrane. The expression of genes encoding high-affinity root phosphate transporters is regulated by the phosphorus (P) status of the plant. The transduction pathway involved in this regulation is not known at present. It is a systemic response rather than a localized response, however, the overall phosphate status of the plant being the controlling factor. Under phosphate stress, the expression of genes encoding these phosphate transporters is up-regulated. This results in a greater number of transporter proteins in the plasmalemma and enhanced phosphate uptake rates, if phosphate is available at the membrane surface. Uptake occurs around the root tip, into epidermal cells with their associated root hairs and into cells in the outer layers of the root cortex. Further back along the root axis, phosphate can also be taken up by transfer from mycorrhizal fungi to root cortical cells.Strategies for increasing nutrient uptake by overexpressing genes encoding high-affinity phosphate transporters are likely to be mainly applicable to situations where a reasonable phosphate concentration can be maintained at the outer surface of the plasmalemma. Maintaining such a concentration is a major problem in the phosphate deficient soils of the semi-arid tropics (SAT), so emphasis in these soils is on strategies to improve the movement of phosphate to the surface of the plasmalemma. There may be scope, however, for manipulating the expression of genes involved in the internal mobilisation of phosphate within the plant, thereby improving phosphate utilisation.  相似文献   

16.
Inhibition of rat skeletal muscle adenylate deaminase by creatine phosphate reported previously is due to inorganic pyrophosphate present as a contaminant in commercial preparations of creatine phosphate. This conclusion is based on the following evidence: a compound that inhibits adenylate deaminase can be separated from commercially prepared creatine phosphate by ion exchange chromatography; the inhibition by "creatine phosphate" and by the separated inhibitory compound is relieved by treatment with inorganic pyrophosphatase; inhibition by inorganic pyrophosphate is similar to that produced by unpurified creatine phosphate; and pyrophosphate is present in commercially available creatine phosphate in amounts sufficient to account for the inhibition. Some commercial preparations of creatine phosphate contain much less pyrophosphate than others; these preparations are only weakly inhibitory. Inorganic triphosphate is a more powerful inhibitor of the enzyme than pyrophosphate; it may also be present as a contaminant in creatine phosphate.  相似文献   

17.
Summary The calcium uptake in the microsomial fraction isolated from the smooth muscle of the antrum of the pig stomach is stimulated by phosphate. The microsomial vesicles which are loaded with calcium phosphate can be purified by differential centrifugation. A purification of 36 times in terms of calcium content was reached. Electron microscopy of the freshly prepared material revealed calcium phosphate deposits in the form of needles of crystalline calcium phosphate. This structure differs from that of the deposits which appear in the fragmented sarcoplasmic reticulum of skeletal muscle. Their morphology is that of non-crystalline calcium phosphate. However, on standing these deposits convert slowly into crystalline calcium phosphate. This difference reflects different kinetics of crystallization of the precipitates in the two preparations. After negative staining of the calcium phosphate loaded microsomes of skeletal and of smooth muscle, only few deposits are preserved because a release of calcium occurs as a consequence of the action of the stain and also of the dilution and warming up of the suspension. Smooth muscle microsomes partially purified by loading with calcium phosphate were studied by freeze etching and rotary replication. Membrane fragments displaying subunit intramembrane particles similar to those observed in sarcoplasmic reticulum of skeletal muscle could be identified. However, in the smooth muscle microsomes the intramembrane particles were much less densely packed. Part of these particles could correspond to calcium transport sites.  相似文献   

18.
Hepatocytes were prepared from control and inflamed rats. Mannose incorporation into dolichol monophosphate mannose in homogenate and microsomal fraction of the hepatocytes was increased 2-fold over the controls 24 h after induction of inflammation by turpentine injection. Incubation of hepatocytes from both control and inflamed rats with 0.1-10 microM-dexamethasone produced a 1.5-fold increase of dolichol phosphate mannose formation, whereas, 100 microM-dexamethasone decreased its formation. The increase in the ratio of dolichol phosphate mannose formation in inflamed over controls was virtually eliminated when the cell homogenate assay mixtures included 30 nmol of exogenous dolichol phosphate. This supports the earlier suggestion that the increase in the enzyme activity in inflammation could be due to higher concentrations of endogenous dolichol phosphate [ Coolbear & Mookerjea (1981) J. Biol. Chem. 256, 4529-4535]. In contrast, the increase in the ratio of dolichol phosphate mannose formation between dexamethasone-treated and untreated hepatocytes remained unchanged when increasing concentrations of exogenous dolichol phosphate were added to the assays. This suggests that the increase in glycosylation of dolichol phosphate in dexamethasone-treated hepatocytes is probably due to the increased mannosyltransferase activity, rather than due to higher concentrations of endogenous dolichol phosphate in these cells.  相似文献   

19.
Under exchange conditions (no net increase in calcium), erythrocytes incubated in isoosmotic phosphate-buffered saline have an exchangeable calcium pool comprising about 10% of the total erythrocyte calcium. This pool reaches exchange equilibrium, for either inward-directed or outward-directed transfer of the 45Ca-exchange label, with a half-time of about 20 min. The uptake of Ca2+ requires phosphate, even under hypo-osmotic conditions, where the calcium loading expected as the cells swell is obtained only when phosphate is present. The phosphate requirement is not due to Ca2+ transport as a phosphate salt. This exchangeable-calcium pool is also present in sickle-cell-anemia erythrocytes, and comprises a similar proportion of total cellular calcium.  相似文献   

20.
The effects of phorbol esters and diacylglycerol on phosphate uptake in opossum kidney (OK) cells were investigated to assess the possible role of Ca2+-activated, phospholipid dependent protein kinase (protein kinase C) on renal phosphate handling. OK cells are widely used as a model of proximal renal tubular cells and are reported to possess a Na+-dependent phosphate transport system. Phorbol-12,13-dibutyrate (PDBu) inhibited phosphate uptake. This inhibitory effect was synergistically enhanced with A23187. 4 beta-phorbol 12,13-didecanoate inhibited phosphate uptake, while 4 alpha-phorbol 12,13-didecanoate did not. 1-oleoyl-2-acetyl-glycerol (OAG), a synthetic diacylglycerol, also exhibited an inhibitory effect on phosphate uptake. These data suggest the possible involvement of protein kinase C in proximal renal tubular phosphate transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号