首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Real-time PCR for the detection of Cryptosporidium parvum.   总被引:9,自引:0,他引:9  
Real time, TaqMan PCR assays were developed for the Cp11 and 18S rRNA genes of the protozoan parasite Cryptosporidium parvum. The TaqMan probes were specific for the genus Cryptosporidium, but could not hybridize exclusively with human-infectious C. parvum species and genotypes. In conjunction with development of the TaqMan assays, two commercial kits, the Mo Bio UltraClean Soil DNA kit, and the Qiagen QIAamp DNA Stool kit, were evaluated for DNA extraction from calf diarrhea and manure, and potassium dichromate and formalin preserved human feces. Real-time quantitation was achieved with the diarrhea samples, but nested PCR was necessary to detect C. parvum DNA in manure and human feces. Ileal tissues were obtained from calves at 3, 7, and 14 days post-infection, and DNA extracted and assayed. Nested PCR detected C. parvum DNA in the 7-day post-infection sample, but neither of the other time point samples were positive. These results indicate that real-time quantitation of C. parvum DNA, extracted using the commercial kits, is feasible on diarrheic feces, with large numbers of oocysts and small concentrations of PCR inhibitor(s). For samples with few oocysts and high concentrations of PCR inhibitor(s), such as manure, nested PCR is necessary for detection.  相似文献   

2.
Cryptosporidium parvum is a protozoan parasite responsible for an increasing number of outbreaks of gastrointestinal illness worldwide. In this report, we describe development of sample preparation protocols for polymerase chain reaction (PCR)-based detection of C. parvum in fecal material and environmental water samples. Two of these methods were found adequate for isolation of Cryptosporidium DNA from filtered water pellet suspensions. The first involved several filtration steps, immunomagnetic separation and freeze-thaw cycles. The second method involved filtration, addition of EnviroAmp lysis reagent, freeze-thaw cycles and precipitation of the DNA with isopropanol. Using nested PCR, we detected 100 oocysts/ml of filtered water pellet suspension, with either of the above sample preparation procedures. Nested PCR increased sensitivity of the assay by two to three orders of magnitude as compared to the primary PCR. The detection limit for seeded fecal samples was 10-fold higher than for filtered environmental water pellet suspension. Nested PCR results showed 62.4 and 91.1% correlation with immunofluorescence assay (IFA) for fecal samples and filtered environmental water pellet suspensions, respectively. This correlation decreased to 47.2% and 44.4%, respectively, when only IFA positive samples were analyzed. However, in fecal samples contaminated with a high number (> 10(5)/g) of C. parvum oocysts, this correlation was 100%.  相似文献   

3.
4.
Cryptosporidium parvum has emerged as one of the most important new contaminants found in drinking water. Current protocols for the detection of cryptosporidia are time-consuming and rather inefficient. We recently described an immunomagnetic separation-polymerase chain reaction (IMS-PCR) assay permitting highly sensitive detection of C. parvum oocysts in drinking water samples. In this study, a second IMS-PCR assay to detect all cryptosporidial oocysts was developed, and both IMS-PCR assays were optimized on river water samples. A comparative study of the two IMS-PCR assays and the classical detection method based on an immunofluorescence assay (IFA) was carried out on 50 environmental samples. Whatever the type of water sample, the discrepancy in C. parvum detection between the IFA and IMS-PCR took the form of IFA-negative/IMS-PCR-positive results, and was caused mainly by the greater sensitivity of IMS-PCR as compared with IFA. Of the 50 water samples, only five tested positive for C. parvum using IMS-PCR, and could constitute a threat to human health. These results show that both IMS-PCR assays provide a rapid (1 d) and sensitive means of screening environmental water samples for the presence of cryptosporidia and C. parvum oocysts.  相似文献   

5.
Fecal samples were taken from wild ducks on the lower Rio Grande River around Las Cruces, N. Mex., from September 2000 to January 2001. Giardia cysts and Cryptosporidium oocysts were purified from 69 samples by sucrose enrichment followed by cesium chloride (CsCl) gradient centrifugation and were viewed via fluorescent-antibody (FA) staining. For some samples, recovered cysts and oocysts were further screened via PCR to determine the presence of Giardia lamblia and Crytosporidium parvum. The results of this study indicate that 49% of the ducks were carriers of Cryptosporidium, and the Cryptosporidium oocyst concentrations ranged from 0 to 2,182 oocysts per g of feces (mean +/- standard deviation, 47.53 +/- 270.3 oocysts per g); also, 28% of the ducks were positive for Giardia, and the Giardia cyst concentrations ranged from 0 to 29,293 cysts per g of feces (mean +/- standard deviation, 436 +/- 3,525.4 cysts per g). Of the 69 samples, only 14 had (oo)cyst concentrations that were above the PCR detection limit. Samples did test positive for Cryptosporidium sp. However, C. parvum and G. lamblia were not detected in any of the 14 samples tested by PCR. Ducks on their southern migration through southern New Mexico were positive for Cryptosporidium and Giardia as determined by FA staining, but C. parvum and G. lamblia were not detected.  相似文献   

6.
The protozoan parasite Cryptosporidium parvum is known to occur widely in both raw and drinking water and is the cause of waterborne outbreaks of gastroenteritis throughout the world. The routinely used method for the detection of Cryptosporidium oocysts in water is based on an immunofluorescence assay (IFA). It is both time-consuming and nonspecific for the human pathogenic species C. parvum. We have developed a TaqMan polymerase chain reaction (PCR) test that accurately quantifies C. parvum oocysts in treated and untreated water samples. The protocol consisted of the following successive steps: Envirochek capsule filtration, immunomagnetic separation (IMS), thermal lysis followed by DNA purification using Nanosep centrifugal devices and, finally, real-time PCR using fluorescent TaqMan technology. Quantification was accomplished by comparing the fluorescence signals obtained from test samples with those from standard dilutions of C. parvum oocysts. This IMS-real-time PCR assay permits rapid and reliable quantification over six orders of magnitude, with a detection limit of five oocysts for purified oocyst solutions and eight oocysts for spiked water samples. Replicate samples of spiked tap water and Seine River water samples (with approximately 78 and 775 oocysts) were tested. C. parvum oocyst recoveries, which ranged from 47.4% to 99% and from 39.1% to 68.3%, respectively, were significantly higher and less variable than those reported using the traditional US Environmental Protection Agency (USEPA) method 1622. This new molecular method offers a rapid, sensitive and specific alternative for C. parvum oocyst quantification in water.  相似文献   

7.
The purpose of this study was to determine whether gamma-irradiated Cryptosporidium parvum oocysts could elicit protective immunity against cryptosporidiosis in dairy calves. Cryptosporidium parvum Iowa strain oocysts (1 x 10(6) per inoculation) were exposed to various levels of gamma irradiation (350-500 Gy) and inoculated into 1-day-old dairy calves. The calves were examined daily for clinical signs of cryptosporidiosis, and fecal samples were processed for the presence of C. parvum oocysts. At 21 days of age, the calves were challenged by oral inoculation with 1 x 10(5) C. parvum oocysts and examined daily for oocyst shedding and clinical cryptosporidiosis. Calves that were inoculated with C. parvum oocysts exposed to 350-375 Gy shed C. parvum oocysts in feces. Higher irradiation doses (450 or 500 Gy) prevented oocyst development, but the calves remained susceptible to C. parvum challenge infection. Cryptosporidium parvum oocysts exposed to 400 Gy were incapable of any measurable development but retained the capacity to elicit a protective response against C. parvum challenge. These findings indicate that it may be possible to protect calves against cryptosporidiosis by inoculation with C. parvum oocysts exposed to 400-Gy gamma irradiation.  相似文献   

8.
A new strategy for the detection of infectious Cryptosporidium parvum oocysts in water samples, which combines immunomagnetic separation (IMS) for recovery of oocysts with in vitro cell culturing and PCR (CC-PCR), was field tested with a total of 122 raw source water samples and 121 filter backwash water grab samples obtained from 25 sites in the United States. In addition, samples were processed by Percoll-sucrose flotation and oocysts were detected by an immunofluorescence assay (IFA) as a baseline method. Samples of different water quality were seeded with viable C. parvum to evaluate oocyst recovery efficiencies and the performance of the CC-PCR protocol. Mean method oocyst recoveries, including concentration of seeded 10-liter samples, from raw water were 26.1% for IMS and 16.6% for flotation, while recoveries from seeded filter backwash water were 9.1 and 5.8%, respectively. There was full agreement between IFA oocyst counts of IMS-purified seeded samples and CC-PCR results. In natural samples, CC-PCR detected infectious C. parvum in 4.9% (6) of the raw water samples and 7.4% (9) of the filter backwash water samples, while IFA detected oocysts in 13.1% (16) of the raw water samples and 5.8% (7) of the filter backwash water samples. All CC-PCR products were confirmed by cloning and DNA sequence analysis and were greater than 98% homologous to the C. parvum KSU-1 hsp70 gene product. DNA sequence analysis also revealed reproducible nucleotide substitutions among the hsp70 fragments, suggesting that several different strains of infectious C. parvum were detected.  相似文献   

9.
Conjunctival swabs taken from a two-month-old kitten showing ocular discharge were found to be positive for Chlamydophila felis by PCR and isolation. The cat was treated with topical 1% tetracycline ophthalmic ointment twice a day for 60 days. At the end of the treatment, the cat showed no ocular signs and conjunctival swabs resulted PCR and isolation negative for C. felis. Forty days later, the ocular discharge recurred and C. felis was isolated from conjunctival swabs taken from both the cat's eyes. Twenty days of doxycycline systemic treatment at 10 mg/kg once daily was started. The treatment resulted in a complete clinical recovery after a few days. C. felis was not isolated or amplified on the 10th day after beginning the treatment. The cat's conjunctival swabs were also PCR and isolation negative on the 10th, 30th, 60th, 90th, 120th and 240th days after the end of therapy.  相似文献   

10.
This study was performed to investigate experimental transmission of Cryptosporidium parvum in a calf. A 25-day-old Korean native calf was inoculated per os with 1 x 10(6) C. parvum oocysts isolated from a Korean mouse. The calf commenced oocyst discharge in feces on post-inoculation day 4, and continued until the day 11. The number of discharged oocysts peaked (4.9 x 10(5)) on post-inoculation day 6. However, the calf did not show signs of diarrhea. The present results indicate that C. parvum is cross-transmissible between the calf and the mouse.  相似文献   

11.
To evaluate the efficacy of ronidazole for treatment of Tritrichomonas foetus infection, 6 Tritrichomonas-free kittens were experimentally infected with a Korean isolate of T. foetus. The experimental infection was confirmed by direct microscopy, culture, and single-tube nested PCR, and all cats demonstrated trophozoites of T. foetus by day 20 post-infection in the feces. From day 30 after the experimentally induced infection, 3 cats were treated with ronidazole (50 mg/kg twice a day for 14 days) and 3 other cats received placebo. Feces from each cat were tested for the presence of T. foetus by direct smear and culture of rectal swab samples using modified Diamond's medium once a week for 4 weeks. To confirm the culture results, the presence of T. foetus rRNA gene was determined by single-tube nested PCR assay. All 3 cats in the treatment group receiving ronidazole showed negative results for T. foetus infection during 2 weeks of treatment and 4 weeks follow-up by all detection methods used in this study. In contrast, rectal swab samples from cats in the control group were positive for T. foetus continuously throughout the study. The present study indicates that ronidazole is also effective to treat cats infected experimentally with a Korean isolate of T. foetus at a dose of 50 mg/kg twice a day for 14 days.  相似文献   

12.
In this study, 107 fecal specimens were collected from 40 sampling sites in Taiwan livestock and avian farms to test for Cryptosporidium spp. oocysts. Ten of 107 samples analyzed by enzyme-linked immunosorbent assay showed the presence of Cryptosporidium spp., among which 6 samples were simultaneously confirmed by immunofluorescence assay and polymerase chain reaction. Nucleic acid sequencing of the 18S rRNA gene identified 3 clusters of Cryptosporidium spp. Three Cryptosporidium parvum isolates were from cattle and sheep feces. One Cryptosporidium andersoni isolate was detected from pig feces. The other 2 novel Cryptosporidium genotypes were not similar to any known Cryptosporidium spp. according to the DNA sequences of the 18S rRNA gene.  相似文献   

13.
Aims:  Waterborne outbreaks of diarrhoeal illness reported worldwide are mostly associated with Cryptosporidium spp. and Giardia spp. Their presence in aquatic systems makes it essential to develop preventive strategies for water and food safety. This study was undertaken to monitor the presence of Cryptosporidium and Giardia in a total of 175 water samples, including raw and treated water from both surface and ground sources in Portugal.
Methods and Results:  The samples were processed according to USEPA Method 1623 for immunomagnetic separation (IMS) of Cryptosporidium oocysts and Giardia cysts, followed by detection of oocysts/cysts by immunofluorecence (IFA) microscopy, PCR-based techniques were done on all water samples collected. Out of 175 samples, 81 (46·3%) were positive for Cryptosporidium and 67 (38·3%) for Giardia by IFA. Cryptosporidium spp. and G. duodenalis genotypes were identified by PCR in 37 (21·7%) and 9 (5·1%) water samples, respectively. C. parvum was the most common species (78·9%), followed by C. hominis (13·2%), C. andersoni (5·3%), and C. muris (2·6%). Subtype IdA15 was identified in all C. hominis -positive water samples. S ubtyping revealed the presence of C. parvum subtypes IIaA15G2R1, IIaA16G2R1 and IIdA17G1. Giardia duodenalis subtype A1 was identified.
Conclusions:  The results of the present study suggest that Cryptosporidium spp. and Giardia spp. were widely distributed in source water and treated water in Portugal. Moreover, the results obtained indicate a high occurrence of human-pathogenic Cryptosporidium genotypes and subtypes in raw and treated water samples.
Significance and Impact of the Study:  Thus, water can be a potential vehicle in the transmission of cryptosporidiosis, and giardiasis of humans and animals in Portugal.  相似文献   

14.
We describe a nested PCR-restriction fragment length polymorphism (RFLP) method for detecting low densities of Cryptosporidium spp. oocysts in natural mineral waters and drinking waters. Oocysts were recovered from seeded 1-liter volumes of mineral water by filtration through polycarbonate membranes and from drinking waters by filtration, immunomagnetizable separation, and filter entrapment, followed by direct extraction of DNA. The DNA was released from polycarbonate filter-entrapped oocysts by disruption in lysis buffer by using 15 cycles of freeze-thawing (1 min in liquid nitrogen and 1 min at 65 degrees C), followed by proteinase K digestion. Amplicons were readily detected from two to five intact oocysts on ethidium bromide-stained gels. DNA extracted from Cryptosporidium parvum oocysts, C. muris (RN 66), C. baileyi (Belgium strain, LB 19), human-derived C. meleagridis, C. felis (DNA from oocysts isolated from a cat), and C. andersoni was used to demonstrate species identity by PCR-RFLP after simultaneous digestion with the restriction enzymes DraI and VspI. Discrimination between C. andersoni and C. muris isolates was confirmed by a separate, subsequent digestion with DdeI. Of 14 drinking water samples tested, 12 were found to be positive by microscopy, 8 were found to be positive by direct PCR, and 14 were found to be positive by using a nested PCR. The Cryptosporidium species detected in these finished water samples was C. parvum genotype 1. This method consistently and routinely detected >5 oocysts per sample.  相似文献   

15.
Our primary goal was to generate an accurate estimate of the daily environmental loading rate of Cryptosporidium parvum oocysts for adult beef cattle, using immunomagnetic separation coupled with direct immunofluorescence microscopy for a highly sensitive diagnostic assay. An additional goal was to measure the prevalence and intensity of fecal shedding of C. parvum oocysts in pre- and postparturient cows as an indicator of their potential to infect young calves. This diagnostic method could detect with a > or = 90% probability oocyst concentrations as low as 3.2 oocysts g of feces(-1), with a 54% probability of detecting just one oocyst g of feces(-1). Using this diagnostic method, the overall apparent prevalence of adult beef cattle testing positive for C. parvum was 7.1% (17 of 240), with 8.3 and 5.8% of cattle shedding oocysts during the pre- and postcalving periods, respectively. The mean intensity of oocyst shedding for test-positive cattle was 3.38 oocysts g of feces(-1). The estimated environmental loading rate of C. parvum ranged from 3,900 to 9,200 oocysts cow(-1) day(-1), which is substantially less than a previous estimate of 1.7 x 10(5) oocysts cow(-1) day(-1) (range of 7.7 x 10(4) to 2.3 x 10(5) oocysts cow(-1) day(-1)) (B. Hoar, E. R. Atwill, and T. B. Farver, Quant. Microbiol. 2:21-36, 2000). Use of this highly sensitive assay functioned to detect a greater proportion of low-intensity shedders in our population of cattle, which reduced the estimated mean intensity of shedding and thereby reduced the associated environmental loading rate compared to those of previous studies.  相似文献   

16.
AIMS: To determine the effect of biotic and abiotic components of soil on the viability and infectivity of Cryptosporidium parvum, and evaluate the suitability of viability tests as a surrogate for oocyst infectivity under various environmental settings. METHODS AND RESULTS: The die-off of C. parvum in saturated and dry loamy soil was monitored over time by immunofluorescence assay (IFA) and PCR to estimate oocysts viability and by cell culture to estimate oocysts infectivity. Pseudomonas aeruginosa activity resulted in digestion of the outer layer of the oocysts, as demonstrated by loss of the ability to react in IFA. Whereas, P. aeruginosa activity did not affect the DNA amplification by PCR. A 1-log reduction in the oocysts infectivity was observed at 30 degrees C in distilled water and in saturated soil while oocysts viability was unchanged. Incubation for 10 days in dry loamy soil at 32 degrees C resulted in a 3-log(10) reduction in their infectivity while no change of oocysts viability was recorded. CONCLUSIONS: Under low temperature, C. parvum oocysts may retain their infectivity for a long time. Soil desiccation and high temperatures enhance the die-off rate of C. parvum. SIGNIFICANCE AND IMPACT OF THE STUDY: Previous die-off studies of C. parvum used viability tests that do not necessarily reflect the oocyst infectivity. Under low temperatures, there was an agreement observed between viability and infectivity tests and oocysts retained their infectivity for a long time. Desiccation and high temperatures enhance the loss of infectivity of C. parvum. The presented die-off data have significant implications on the management of wastewater reuse in warm environments.  相似文献   

17.
Monoclonal antibodies (MAb) were prepared against the 40-kDa capsid protein of Cryptosporidium parvum virus (CPV) by immunizing mice with purified recombinant CPV40 protein. In immunoblotting analysis, MAbCPV40-1 bound to a 40-kDa protein in extracts of C. parvum oocysts. This 40-kDa protein was localized in the sporozoite cytoplasm by immunofluorescence (IFA) staining with MAbCPV40-1. In a dot-blot assay, MAbCPV40-1 was capable of detecting 10(2) non-bleach-treated and 10(2)-10(3) bleach-treated C. parvum oocysts. MAbCPV40-1 was capable of detecting CPV40 antigen in both soluble and total C. parvum oocyst protein extracts, indicating a potential use for detecting this parasite in environmental samples.  相似文献   

18.
Giardiasis and cryptosporidiosis are diseases caused by the protozoan parasites Giardia lamblia and Cryptosporidium parvum. Waterborne transmission of these organisms has become more prevalent in recent years, and regulatory agencies are urging that source and finished water be screened for these organisms. A major problem associated with testing for these organisms is the lack of reliable methodologies and baseline information on the prevalence of these parasites in various water sources. Our study addressed both of these issues. We evaluated the presence and reduction of Giardia cysts and Cryptosporidium oocysts in sewage effluent by a combination of indirect fluorescent antibody (IFA) staining and PCR. Our results indicated a 3-log reduction of Giardia cysts and a 2-log reduction of Cryptosporidium oocysts through the sewage treatment process as determined by IFA. We developed a nested PCR to detect Cryptosporidium oocysts and used a double PCR to detect Giardia cysts. A 100% correlation was noted between IFA and PCR detection of Giardia cysts while correlation for Cryptosporidium oocysts was slightly less. On the basis of these results, PCR may be a useful tool in the environmental analysis of water samples for Giardia and Cryptosporidium organisms.  相似文献   

19.
Cryptosporidium parvum and Giardia lamblia are protozoa capable of causing gastrointestinal diseases. Currently, these organisms are identified using immunofluorescent antibody (IFA)-based microscopy, and identification requires trained individuals for final confirmation. Since artificial neural networks (ANN) can provide an automated means of identification, thereby reducing human errors related to misidentification, ANN were developed to identify Cryptosporidium oocyst and Giardia cyst images. Digitized images of C. parvum oocysts and G. lamblia cysts stained with various commercial IFA reagents were used as positive controls. The images were captured using a color digital camera at 400 x (total magnification), processed, and converted into a binary numerical array. A variety of "negative" images were also captured and processed. The ANN were developed using these images and a rigorous training and testing protocol. The Cryptosporidium oocyst ANN were trained with 1,586 images, while Giardia cyst ANN were trained with 2,431 images. After training, the best-performing ANN were selected based on an initial testing performance against 100 images (50 positive and 50 negative images). The networks were validated against previously "unseen" images of 500 Cryptosporidium oocysts (250 positive, 250 negative) and 282 Giardia cysts (232 positive, 50 negative). The selected ANNs correctly identified 91.8 and 99.6% of the Cryptosporidium oocyst and Giardia cyst images, respectively. These results indicate that ANN technology can be an alternate to having trained personnel for detecting these pathogens and can be a boon to underdeveloped regions of the world where there is a chronic shortage of adequately skilled individuals to detect these pathogens.  相似文献   

20.
We describe a rapid method for extracting and concentrating Cryptosporidium oocysts from human faecal samples with subsequent DNA preparation for mainstream PCR applications. This method consists of extracting faecal lipids using a modified water-ether treatment and releasing DNA from semi-purified oocysts by freeze thawing in lysis buffer. Following immunomagnetisable separation (IMS), recovery rates of 29.5%, 43.2% and 49.8% were obtained from oocyst-negative solid, semi-solid and liquid faeces, respectively, seeded with 100 +/- 2 C. parvum oocysts, which were enumerated by flow cytometry. A retrospective analysis was conducted on 92 positive human faecal samples including 78 oocyst-positive cases from 2 UK cryptosporidiosis outbreaks (outbreak A = 34 samples, outbreak B = 44 samples) and 14 oocyst-positive, sporadic cases. We used primers targeting the Cryptosporidium oocyst wall protein gene (COWP; STN-COWP), the 18S rRNA (direct PCR) and the dihydrofolate reductase gene (dhfr, MAS-PCR) fragments to evaluate extracted DNA by PCR. PCR inhibitors were present in 20 samples when template was co-amplified with the 18S rRNA gene primers and an internal control. Template dilution (1/5) in polyvinylpyrrolidone (10 mg ml(-1), pH 8.0) transformed four PCR-negative samples to PCR-positive and increased amplicon intensity in previously positive samples. Eighteen of 20 PCR-negative samples produced visible amplicons when Taq polymerase concentration in the STN-COWP PCR was increased from 2.5 to 5 U. The STN-COWP PCR assay amplified 90 of 92 samples (97.8%) and the MAS-PCR assay amplified 70 of 92 samples (76.1%) tested. In the absence of inhibitors, DNA equivalent to 3 C. parvum oocysts was amplified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号