首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In Saccharomyces cerevisiae, hexose uptake is mediated by HXT proteins which belong to a superfamily of monosaccharide facilitators. We have identified three more genes that encode hexose transporters (HXT5, 6, 7). Genes HXT6 and HXT7 are almost identical and located in tandem 3′ adjacent to HXT3 on chromosome IV. We have constructed a set of congenic strains expressing none or any one of the seven known HXT genes and followed growth and flux rates for glucose utilization. The hxt null strain does not grow on glucose, fructose or mannose, and both glucose uptake and flux rate were below the detection level. Expression of either HXT1, 2, 3, 4, 6 or 7 is basically sufficient for aerobic growth on these sugars. In most of the constructs, glucose was the preferred substrate compared to fructose or mannose. There is a considerable variation in flux and growth rates with 1% glucose, dependent on the expression of the individual HXT genes. Expression of either HXT2, 6 or 7 in the null background is sufficient for growth on 0.1% glucose, while growth of strains with only HXT1, 3 or 4 requires higher (≥1%) glucose concentrations. These results demonstrate that individual HXT proteins can function independently as hexose transporters, and that most of the metabolically relevant HXT transporters from S. cerevisiae have been identified.  相似文献   

2.
Saccharomyces cerevisiae accomplishes high rates of hexose transport. The kinetics of hexose transport are complex. The capacity and kinetic complexity of hexose transport in yeast are reflected in the large number of sugar transporter genes in the genome. Twenty hexose transporter genes exist in S. cerevisiae. Some of these have been found by genetic means; many have been discovered by the comprehensive sequencing of the yeast genome. This review codifies the nomenclature of the hexose transporter genes and describes the sequence homology and structural similarity of the proteins they encode. Information about the expression and function of the transporters is presented. Access to the sequences of the genes and proteins at three sequence databases is provided via the World Wide Web. Received: 24 June 1996 / Accepted: 29 July 1996  相似文献   

3.
Molecular Genetics and Genomics - In Saccharomyces cerevisiae the metabolite phosphoribosyl-pyrophosphate (PRPP) is required for purine, pyrimidine, tryptophan and histidine biosynthesis. Enzymes...  相似文献   

4.
The HXT2 gene of the yeast Saccharomyces cerevisiae was identified on the basis of its ability to complement the defect in glucose transport of a snf3 mutant when present on the multicopy plasmid pSC2. Analysis of the DNA sequence of HXT2 revealed an open reading frame of 541 codons, capable of encoding a protein of Mr 59,840. The predicted protein displayed high sequence and structural homology to a large family of procaryotic and eucaryotic sugar transporters. These proteins have 12 highly hydrophobic regions that could form transmembrane domains; the spacing of these putative transmembrane domains is also highly conserved. Several amino acid motifs characteristic of this sugar transporter family are also present in the HXT2 protein. An hxt2 null mutant strain lacked a significant component of high-affinity glucose transport when under derepressing (low-glucose) conditions. However, the hxt2 null mutation did not incur a major growth defect on glucose-containing media. Genetic and biochemical analyses suggest that wild-type levels of high-affinity glucose transport require the products of both the HXT2 and SNF3 genes; these genes are not linked. Low-stringency Southern blot analysis revealed a number of other sequences that cross-hybridize with HXT2, suggesting that S. cerevisiae possesses a large family of sugar transporter genes.  相似文献   

5.
The regulation of cellular growth and proliferation in response to environmental cues is critical for development and the maintenance of viability in all organisms. In unicellular organisms, such as the budding yeast Saccharomyces cerevisiae, growth and proliferation are regulated by nutrient availability. We have described changes in the pattern of protein synthesis during the growth of S. cerevisiae cells to stationary phase (E. K. Fuge, E. L. Braun, and M. Werner-Washburne, J. Bacteriol. 176:5802-5813, 1994) and noted a protein, which we designated Snz1p (p35), that shows increased synthesis after entry into stationary phase. We report here the identification of the SNZ1 gene, which encodes this protein. We detected increased SNZ1 mRNA accumulation almost 2 days after glucose exhaustion, significantly later than that of mRNAs encoded by other postexponential genes. SNZ1-related sequences were detected in phylogenetically diverse organisms by sequence comparisons and low-stringency hybridization. Multiple SNZ1-related sequences were detected in some organisms, including S. cerevisiae. Snz1p was found to be among the most evolutionarily conserved proteins currently identified, indicating that we have identified a novel, highly conserved protein involved in growth arrest in S. cerevisiae. The broad phylogenetic distribution, the regulation of the SNZ1 mRNA and protein in S. cerevisiae, and identification of a Snz protein modified during sporulation in the gram-positive bacterium Bacillus subtilis support the hypothesis that Snz proteins are part of an ancient response that occurs during nutrient limitation and growth arrest.  相似文献   

6.
We have recently shown that a member of the Nramp family of metal transporters, Saccharomyces cerevisiae Smf1p, is tightly regulated at the level of protein stability and protein sorting. Under metal replete conditions, Smf1p is targeted to the vacuole for degradation in a manner dependent on the S. cerevisiaeBSD2 gene product, but under metal starvation conditions, Smf1p accumulates at the cell surface. Here, we have addressed whether Smf1p activity may be necessary for its regulation by metal ions and Bsd2p. Well conserved residues within transmembrane domain 4 and the transport signature sequence of Smf1p were mutagenized. We identified two mutants, G190A and G424A, which destroyed Smf1p activity as monitored by complementation of a smf1 mutation. Notably, these mutations also abolished control by metal ions and Bsd2p, suggesting that Smf1p metal transport function may be necessary for its regulation. Two additional mutants isolated (Q419A and E423A) exhibited wild-type complementation activity and were properly targeted for vacuolar degradation in a Bsd2-dependent manner. However, these mutants failed to re-distribute to the plasma membrane under conditions of metal starvation. A model is proposed herein describing the probable role of Smf1 protein conformation in directing its movement to the vacuole versus cell surface in response to changes in metal ion availability.  相似文献   

7.
The complete nucleotide sequence (321 bp) of smr (staphylococcal multidrug resistance), a gene coding for efflux-mediated multidrug resistance of Staphylococcus aureus, was determined by using two different plasmids as DNA templates. The smr gene product (identical to products of ebr and qacC/D genes) was shown to be homologous to a new family of small membrane proteins found in Escherichia coli, Pseudomonas aeruginosa, Agrobacterium tumefaciens, and Proteus vulgaris. The smr gene was subcloned and expressed in S. aureus and E. coli and its ability to confer the multidrug resistant phenotype was demonstrated for two different lipophilic cation classes: phosphonium derivatives and quarternary amines. Expression of smr gene leads to the efflux of tetraphenylphosphonium and to a net decrease in the uptake of lipophilic cations. The deduced polypeptide sequence (107 amino acid residues, 11,665 kDa) has 46% hydrophobic residues (Phe, Ile, Leu, and Val) and 20% hydroxylic residues (Ser and Thr). Four transmembrane segments are predicted for smr gene product. Of the charged amino acid residues, only Glu 13 is located in a transmembrane segment. This Glu 13 is conserved in all members of the family of small membrane proteins. We propose a mechanism whereby exchange of protons at the Glu 13 is a key in the efflux of the lipophilic cation. This mechanism includes the idea that protons are transported to the Glu 13 via an appropriate chain of hydroxylic residues in the transmembrane segments of Smr.  相似文献   

8.
Ubiquitin-conjugating enzymes (E2s), which participate in the post-translational conjugation of ubiquitin to proteins, are encoded by a multigene family in the yeast Saccharomyces cerevisiae. E2s function in a variety of cellular activities including intracellular proteolysis, DNA repair, sporulation, and cell cycle traverse. Here, we report the cloning and characterization of a new member of the yeast UBC gene family, UBC8. UBC8 encodes a 206-amino acid protein containing a highly acidic carboxyl terminus. The primary structure of the protein is similar to that of all other known E2s, with the highest homology being to the E2 (23 kDa) of wheat germ. Haploid strains in which the UBC8 gene is disrupted are viable, and the disruption does not produce any obvious phenotype. The UBC8 protein, produced in Escherichia coli, forms thiol ester adducts with ubiquitin and, apparently, diubiquitin, but does not transfer ubiquitin to histones.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
The DAT1 gene of Saccharomyces cerevisiae encodes a DNA binding protein (Dat1p) that specifically recognizes the minor groove of non-alternating oligo(A).oligo(T) tracts. Sequence-specific recognition requires arginine residues found within three perfectly repeated pentads (G-R-K-P-G) of the Dat1p DNA binding domain [Reardon, B. J., Winters, R. S., Gordon, D., and Winter, E. (1993) Proc. Natl. Acad. Sci. USA 90, 11327-1131]. This report describes a rapid and simple method for purifying the Dat1p DNA binding domain and the biochemical characterization of its interaction with oligo(A).oligo(T) tracts. Oligonucleotide binding experiments and the characterization of yeast genomic Dat1p binding sites show that Dat1p specifically binds to any 11 base sequence in which 10 bases conform to an oligo(A).oligo(T) tract. Binding studies of different sized Dat1p derivatives show that the Dat1p DNA binding domain can function as a monomer. Competition DNA binding assays using poly(I).poly(C), demonstrate that the minor groove oligo(A).oligo(T) constituents are not sufficient for high specificity DNA binding. These data constrain the possible models for Dat1p/oligo(A).oligo(T) complexes, suggest that the DNA binding domain is in an extended structure when complexed to its cognate DNA, and show that Dat1p binding sites are more prevalent than previously thought.  相似文献   

19.
M Gentzsch  W Tanner 《The EMBO journal》1996,15(21):5752-5759
The transfer of mannose to seryl and threonyl residues of secretory proteins is catalyzed by a family of protein mannosyltransferases coded for by seven genes (PMT1-7). Mannose dolichylphosphate is the sugar donor of the reaction, which is localized at the endoplasmic reticulum. By gene disruption and crosses all single, double and triple mutants of genes PMT1-4 were constructed. Two of the double and three of the triple mutants were not able to grow under normal conditions; three of these mutants could grow, however, when osmotically stabilized. The various mutants were extensively characterized concerning growth, morphology and their sensitivity to killer toxin K1, caffeine and calcofluor white. O-Mannosylation of gp115/Gas1p was affected only in pmt4 mutants, whereas glycosylation of chitinase was mainly affected in pmt1 and pmt2 mutants. The results show that protein O-glycosylation is essential for cell wall rigidity and cell integrity and that this protein modification, therefore, is vital for Saccharomyces cerevisiae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号