首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid transfer proteins (LTPs) are a family of proteins that bind and transfer lipids. Utilizing the maize LTP, we have successfully engineered fluorescent reagentless biosensors for the natural ligand of LTPs; this was achieved by using computational protein design to remove a disulfide bridge and attaching a thio-reactive fluorophore. Conformational change induced by ligand titration is thought to affect the fluorescence of the fluorophore, allowing detection of ligand binding. Fluorescence measurements show that our LTP variants have affinity to palmitate that is consistent with wild-type LTP. These molecules have the potential to be utilized as scaffolds to design hydrophobic ligand biosensors or to serve as drug carriers.  相似文献   

2.
Plant lipid transfer proteins are small soluble extracellular proteins that are able to bind and transfer a variety of lipids in vitro. Recently, it has been proposed that lipid transfer proteins may play a key role in plant defence mechanisms, especially during the induction of systemic acquired resistance. However, very little is known about the proteins expressed in developing plants and tissues, since almost all the biophysical and structural data available to date on lipid transfer proteins originate from proteins present in storage tissues of monocot cereal seeds. In this paper, we report the structural and functional characteristics of a lipid transfer protein (named LTP1_1) constitutively expressed in young aerial organs of Nicotiana tabacum (common tobacco). The unlabelled and uniformly labelled proteins were produced in the yeast Pichia pastoris, and we determined the three-dimensional (3D) structure of LTP1_1 using nuclear magnetic resonance (NMR) spectroscopy and molecular modeling techniques. The global fold of LTP1_1 is very close to the previously published structures of LTP1 extracted from cereal seeds, including an internal cavity. However, the chemical shift variations of several NMR signals upon lipid binding show that tobacco LTP1_1 is able to bind only one LysoMyristoylPhosphatidylCholine (LMPC), while wheat and maize LTPs can bind either one or two. Titration experiments using intrinsic tyrosine fluorescence confirm this result not only with LMPC but also with two fatty acids. These differences can be explained by the presence in tobacco LTP1_1 of a hydrophobic cluster closing the second possible access to the protein cavity. This result suggests that LTP1 lipid binding properties could be modulated by subtle changes in a conserved global structure. The biological significance of this finding is discussed in the light of the signalling properties of the tobacco LTP1_1-jasmonate complex described elsewhere.  相似文献   

3.
The homology modelling technique was used to predict the tertiary structures of three members of the low-temperature-inducible barley vegetative shoot epidermal lipid-transfer protein (LTP) family, BLT4, on the basis of the X-ray crystallographically determined three-dimensional structure of a maize seedling LTP. Differences between the maize LTP and the BLT4 family include amino acid substitutions around the entrance and inside the predicted hydrophobic binding tunnels of these proteins. Because of the deletion of the loop region corresponding to Val60–Gly62 of the maize LTP from all three BLT4 LTPs, their internal hydrophobic tunnels are longer. Molecular dynamics modelling shows that BLT4.9 can accommodate hexadecanoic acid in its binding tunnel in similar conformation to the maize LTP. However, modelled cis,cis-9,12-octadecandienoic acid had a more favourable interaction with the BLT4.9 LTP than with the maize protein. Di-cis,cis-9,12-octadecandienoyl phosphatidylglycerol and di-cis,cis-9,12-octadecandienoyl phosphatidylcholine were modelled in the BLT4.9 structure with the fatty acyl group at position 1 embedded in the binding tunnel and the group at position 2 located on the solvent accessible surface of the protein. The results of the modelling suggest that the phospholipid headgroup can form hydrogen and salt bridges with polar and charged residues outside the binding tunnel and the exposed hydrocarbon chain interacts with hydrophobic amino acids on the surface. These results are consistent with the proposal that BLT4 LTPs have a lipid-transfer function associated with frost acclimation in barley.  相似文献   

4.
Lipid transfer proteins (LTPs) are ubiquitous plant lipid-binding proteins that have been associated with multiple developmental and stress responses. Although LTPs typically bind fatty acids and fatty acid derivatives in a non-covalent way, studies on the LTPs of barley seeds have identified an abundantly occurring covalently modified form, LTP1b, the lipid ligand of which has resisted clarification. In the present study, this adduct was identified as the alpha-ketol 9-hydroxy-10-oxo-12(Z)-octadecenoic acid. Further studies on the formation of LTP1b demonstrated that the ligand was introduced by nucleophilic attack of the free carboxylate group of the Asp-7 residue of the protein at carbon-9 of the allene oxide fatty acid 9(S),10-epoxy-10,12(Z)-octadecadienoic acid. This reactive oxylipin was produced in barley seeds by oxygenation of linoleic acid by 9-lipoxygenase followed by dehydration of the resulting hydroperoxide by allene oxide synthase. The generation of protein-oxylipin adducts represents a new function for plant allene oxide synthases, enzymes that have earlier been implicated mainly in the biosynthesis of the jasmonate family of plant hormones. Additionally, the LTP-allene oxide synthase interaction opens new perspectives regarding the roles of LTPs in the signaling of plant defense and development.  相似文献   

5.
Plant cells contain lipid-transfer proteins (LTPs) able to transfer phospholipids between membranes in vitro. Plant LTPs share in common structural and functional features. Recent structural studies carried out by NMR and X-ray crystallography on an LTP isolated from maize seeds have showed that this protein involves four helices packed against a C-terminal region and stabilized by four disulfide bridges. A most striking feature of this structure is the existence of an internal hydrophobic cavity running through the whole molecule and able to accomodate acyl chains. It was thus of interest to study the ability of maize LTP to bind hydrophobic ligands such as acyl chains or lysophosphatidylcholine and to determine the effect of this binding on phospholipid transfer. The binding abilities of maize LTP, presented in this paper, are discussed and compared to those of lipid-binding proteins from animal tissues.  相似文献   

6.
Lipid-transfer proteins: Tools for manipulating membrane lipids   总被引:1,自引:0,他引:1  
Like other eukaryotic cells, plant cells contain proteins able to bind or to transfer lipids. Since they are able to facilitate movements of various phospholipids between membranes and are also capable of binding fatty acids or acyl-CoAs, they have been termed lipid-transfer proteins (LTP). LTPs are basic proteins containing 90 to 95 residues (molecular mass 9 kDa), eight of them being cysteines found in conserved locations. These proteins have been used to manipulate in vitro the lipid composition of isolated membranes either from plant or mammalian sources. In addition to purified LTPs, recombinant LTPs produced by genes expressed in microorganisms can be used for this purpose. Several genes coding for these proteins have been characterized in various plants with different patterns of expression. However, it remains to be investigated whether these recombinant proteins behave functionally as LTPs. The use of purified or recombinant LTPs is promising for the study of the effect of lipid composition on membrane functional properties.  相似文献   

7.
Study of the effect of protein chemical acylation on their functional properties or activity often brings valuable information regarding structure-function relationships. We performed such work on wheat lipid transfer protein, LTP1, to investigate the role of grafted acyl chains on the lipid binding and transfer properties. LTP1 was acylated by using anhydride derivatives of various chain lengths from C2 to C6. Only the chemical modifications with hexanoic acid yielded a marked effect on the tertiary structure and a slight change in the secondary structure. The affinity of the modified proteins for myristoyl-lysophosphatidylcholine was similar to that of the native protein accompanied by a slight decrease in stoichiometry. Interestingly, the acylation of LTP1 enhanced the lipid transfer activity by at least a factor of 10 for hexanoic chain length. Finally, the grafting of acyl chains was investigated by means of molecular modelling, and an attempt is made to correlate with our experimental data.  相似文献   

8.
Plant lipid transfer proteins (LTPs) are small, cysteine-rich proteins secreted into the extracellular space. They belong to the pathogenesis-related proteins (PR-14) family and are believed to be involved in several physiological processes including plant disease resistance, although their precise biological function is still unknown. Here, we show that a recombinant tobacco LTP1 is able to load fatty acids and jasmonic acid. This LTP1 binds to specific plasma membrane sites, previously characterized as elicitin receptors, and is shown to be involved in the activation of plant defense. The biological properties of this LTP1 were compared with those of LTP1-linolenic and LTP1-jasmonic acid complexes. The binding curve of the LTP1-linolenic acid complex to purified tobacco plasma membranes is comparable to the curve obtained with LTP1. In contrast, the LTP1-jasmonic acid complex shows a strongly increased interaction with the plasma membrane receptors. Treatment of tobacco plants with LTP1-jasmonic acid resulted in an enhancement of resistance toward Phytophthora parasitica. These effects were absent upon treatment with LTP1 or jasmonic acid alone. This work presents the first evidence for a biological activity of a LTP1 and points out the crucial role of protein-specific lipophilic ligand interaction in the modulation of the protein activity.  相似文献   

9.
Carvalho Ade O  Gomes VM 《Peptides》2007,28(5):1144-1153
Plant lipid transfer proteins (LTP) are cationic peptides, subdivided into two families, which present molecular masses of around 7 and 10 kDa. The peptides were, thus, denominated due to their ability to reversibly bind and transport hydrophobic molecules in vitro. Both subfamilies possess conserved patterns of eight cysteine residues and the three-dimensional structure reveals an internal hydrophobic cavity that comprises the lipid binding site. Based on the growing knowledge regarding structure, gene expression and regulation and in vitro activity, LTPs are likely to play a role in key processes of plant physiology. Although the roles of plant LTPs have not yet been fully determined. This review aims to present comprehensive information of recent topics, cover new additional data, and present new perspectives on these families of peptides.  相似文献   

10.
Lipid transfer proteins (LTP) and puroindolines are abundant lipid binding proteins of plant seeds. While LTP are ubiquitous plant proteins, puroindolines are only found in the seeds of plants from the Triticae and Avenae tribes. These proteins display a similar overall folding pattern but different lipid binding properties. The unique and diverse biological and technological functions of LTPs and puroindolines are closely related to their structural and lipid binding properties. These proteins are attractive to improve the agronomic performances and food quality of crops. Heterologous expression and genetic engineering should allow industrial production and enlarge applications of these lipid binding proteins.  相似文献   

11.
Lipid transfer proteins (LTPs) are widely distributed in the plant kingdom, but their functions remain elusive. The proteins AlLTP2-4 were isolated from three related Allium plants: garlic (A. sativum L.), Welsh onion (A. fistulosum L.), and Nanking shallot (A. ascalonicum L.). These novel proteins comprise a new class of LTPs associated with the Ace-AMP1 from onion (A. cepa L.). The AlLTP genes encode proteins harboring 132 common amino acids and also share a high level of sequence identity. Protein characteristics and phylogenetic analysis suggest that LTPs could be classified into five distinct groups. The AlLTPs were clustered into the most distantly related plant LTP subfamily and appeared to be restricted to the Allium species. In particular, the number of amino acids existing between the fourth and fifth Cys residue was suggested as a conserved motif facilitating the categorization of all the LTP-related proteins in the family. Unlike other LTPs, AlLTPs harboring both the putative C-terminal propeptide and N-terminal signal peptide were predicted to be localized to cytoplasmic vacuoles. When a chimeric GFP protein fused with both N-terminal and C-terminal AlLTP2 signal peptides was expressed in rice cells, the fluorescence signal was detected in the endomembrane compartments, thereby confirming that AlLTPs are an unprecedented intracellular type of LTP. Collectively, our present data demonstrate that AlLTPs are a novel type of LTP associated with the Allium species.  相似文献   

12.
Li C  Xie W  Bai W  Li Z  Zhao Y  Liu H 《The FEBS journal》2008,275(21):5298-5308
Although plant non-specific lipid transfer proteins (ns-LTPs) are characterized by their ability to bind and transfer a broad range of hydrophobic ligands in vitro, their biological functions in vivo remain unclear. Recently, it has been proposed that ns-LTPs may play a key role in plant defense mechanisms, particularly during the induction of systemic acquired resistance, however, very little is known about the regulation in this process. We report that the binding of maize non-specific lipid transfer protein (Zm-LTP) to calmodulin (CaM) is in a calcium-independent manner. To better understand the interaction mechanism between Zm-LTP and CaM, the CaM-binding site of Zm-LTP was mapped to the region of amino acids 46-60. Point mutations indicate that four amino acid residues, R46, R47, K54 and R58, in this region are crucial for binding. Furthermore, we tested the effects of CaM on the lipid-binding activity of Zm-LTP in the presence of Ca(2+), EGTA, N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide and trifluoperazine respectively. We also investigated the structural features of CaM-binding motifs in LTPs from different species and strong differences were observed. Taken together, our results suggest that the interaction with CaM could be a common feature of plant LTPs. The identification and characterization of CaM-binding domain of LTPs should provide new insights into the mechanism by which the physiological functions of LTPs are regulated.  相似文献   

13.
14.
The 7-kDa lipid transfer proteins, LTP2s, share some amino-acid sequence similarities with the 9-kDa isoforms, LTP1s. Both proteins display an identical cysteine motif and, in this regard, LTP2s have been classified as lipid transfer proteins. However, in contrast with LTP1s, no data are available on their structure, cysteine pairings, lipid transfer and lipid binding properties. We reported on the isolation of two isoforms of 7-kDa lipid transfer protein, LTP2, from wheat seeds and showed for the first time that they indeed display lipid transfer activity. Trypsin and chymotrypsin digestions of the native LTP2 afforded the sequence of both isoforms and assignment of disulfide bonds. The cysteine pairings, Cys10--Cys24, Cys25--Cys60, Cys2--Cys34, Cys36--Cys67, revealed a mismatch at the Cys34-X-Cys36 motif of LTP2 compared to LTP1. Moreover, the secondary structure as determined by circular dichroism suggested an identical proportion of alpha helices, beta sheets and random coils. By analogy with the structure of the LTP1, we discussed what structural changes are required to accommodate the LTP2 disulfide pattern.  相似文献   

15.
16.
Non-specific lipid transfer proteins belonging to LTP1 family represent the most important allergens for non pollen-related allergies to Rosaceae fruits in the Mediterranean area. Peach LTP1 (Pru p 3) is a major allergen and is considered the prototypic allergenic LTP. On the contrary, pear allergy without pollinosis seems to be under-reported when compared to other Rosaceae fruits suggesting that the as-yet-uncharacterized pear LTP1 (Pyr c 3) has in vivo a low allergenicity. We report here on the identification of four cDNAs encoding for LTP1 in pear fruits. The two isoforms exhibiting amino acid sequences most similar to those of peach and apple homologues were obtained as recombinant proteins. Such isoforms exhibited CD spectra and lipid binding ability typical of LTP1 family. Moreover, pear LTP1 mRNA was mainly found in the peel, as previously shown for other Rosaceae fruits. By means of IgE ELISA assays a considerable immunoreactivity of these proteins to LTP-sensitive patient sera was detected, even though allergic reactions after ingestion of pear were not reported in the clinical history of the patients. Finally, the abundance of LTP1 in protein extracts from pear peel, in which LTP1 from Rosaceae fruits is mainly confined, was estimated to be much lower as compared to peach peel. Our data suggest that the two isoforms of pear LTP1 characterized in this study possess biochemical features and IgE-binding ability similar to allergenic LTPs. Their low concentrations in pear might be the cause of the low frequency of LTP-mediated pear allergy.  相似文献   

17.
Plant lipid transfer proteins (LTPs) are a class of proteins whose functions are still unknown. Some are proposed to have antimicrobial activities. To understand whether LTP110, a rice LTP that we previously identified from rice leaves, plays a role in the protection function against some serious rice pathogens, we investigated the antifungal and antibacterial properties of LTP110. A cDNA sequence, encoding the mature peptide of LTP110, was cloned into the Impact-CN prokaryotic expression system. The purified protein was used for an in vitro inhibition test against rice pathogens, Pyricularia oryzae and Xanthomonas oryzae. The results showed that LTP110 inhibited the germination of Pyricularia oryzae spores, and its inhibitory activity decreased in the presence of a divalent cation. This suggests that the antifungal activity is affected by ions in the media; LTP110 only slightly inhibited the growth of Xanthomonas oryzae. However, the addition of LTP110 to cultured Chinese hamster ovarian cells did not retard growth, suggesting that the toxicity of LTP110 is only restricted to some cell types. Its antimicrobial activity is potentially due to interactions between LTP and microbe-specific structures.  相似文献   

18.
19.
Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, a novel gene Ltp 3F1 encoding an antifungal protein from wheat (Sumai 3) was subcloned, overexpressed in Escherichia coli BL-21 (DE3) and enriched using ammonium sulfate fractionation followed by gel permeation chromatography. Molecular phylogeny analyses of wheat Ltp 3F1 gene showed a strong identity to other plant LTPs. Predicted three-dimensional structural model showed the presence of 6 α-helices and 9 loop turns. The active site catalytic residues Gly30, Pro50, Ala52 and Cys55 may be suggested for catalyzing the reaction involved in lipid binding. SDS–PAGE analysis confirmed the production of recombinant fusion protein. The LTP fusion protein exhibited a broad-spectrum antifungal activity against Alternaria sp., Rhizoctonia solani, Curvularia lunata, Bipolaris oryzae, Cylindrocladium scoparium, Botrytis cinerea and Sarocladium oryzae. Gene cassette with cyanamide hydratase (cah) marker and Ltp 3F1 gene was constructed for genetic transformation in tobacco. Efficient regeneration was achieved in selective media amended with cyanamide. Transgenic plants with normal phenotype were obtained. Results of PCR and Southern, Northern and Western hybridization analyses confirmed the integration and expression of genes in transgenic plants. Experiments with detached leaves from transgenic tobacco expressing Ltp 3F1 gene showed fungal resistance. Due to the innate potential of broad-spectrum antifungal activity, wheat Ltp 3F1 gene can be used to enhance resistance against fungi in crop plants.  相似文献   

20.
Very little is known about lipid transfer proteins from flax (Linum usitatissimum L.). In the present work, three genes encoding a lipid transfer protein (LTP) were isolated from flax, two of which encoded Type-1 and one Type-2 LTPs with molecular masses of about 9 and 7 kDa, respectively. The analysis of deduced amino acid sequence reveals that only Type 2 of the L. usitatissimum leaf specific LTP (LuLTP_Ls) had an N terminal signal peptide consisting of 23 amino acids. The phylogenetic analyses of LuLTP_Ls suggest their closest relatedness with respective proteins from Dimocarpus longan and Vitis vinifera. The gene expression analysis shows that LTP Type 1 genes, which include LuLTP_Ls1 and LuLTP_Ls3, were progressively expressed during leaf development, whereas LuLTP_Ls4 (Type 2) was expressed only at initial and terminal senescence stages of cotyledons. The results suggest that both types of LuLTP_Ls were differentially yet significantly expressed in cotyledons implicating their function in transport and scavenging lipidic skeletons for the benefit of other developing parts of the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号