首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
T Ohmori  Y Yatomi  Y Wu  M Osada  K Satoh  Y Ozaki 《Biochemistry》2001,40(43):12992-13001
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a 130K transmembrane glycoprotein that belongs to the immunoglobulin gene superfamily and is expressed on the surface of hematological or vascular cells, including platelets and endothelial cells. Although the importance of this adhesion molecule in various cell-cell interactions is established, its function in platelets remains ill-defined. In the process of clarifying the mechanism by which the lectin wheat germ agglutinin (WGA) activates platelets, we unexpectedly discovered that PECAM-1 is involved in signal transduction pathways elicited by this N-acetyl-D-glucosamine (NAGlu)-reactive lectin. WGA, which is a very potent platelet stimulator, elicited a rapid surge in Syk and phospholipase C (PLC)-gamma 2 tyrosine phosphorylation and the resultant intracellular Ca(2+) mobilization; collagen, as reported, induced these responses, but in a much slower and weaker manner. WGA strongly induced tyrosine phosphorylation of a 130-140K protein, which was confirmed to be PECAM-1 by immunoprecipitation and immunodepletion studies. WGA-induced PECAM-1 tyrosine phosphorylation occurred rapidly, strongly and in a manner independent of platelet aggregation or cell-cell contact; these characteristics of PECAM-1 phosphorylation were not mimicked at all by receptor-mediated platelet agonists. In addition, WGA was found to associate with PECAM-1 itself, and anti-PECAM-1 antibody, as well as NAGlu, specifically inhibited WGA-induced platelet aggregation. In PECAM-1 immunoprecipitates, Src family tyrosine kinases existed, and a kinase activity was detected, which increased upon WGA stimulation. Furthermore, the Src family kinase inhibitor PP2 inhibited WGA-induced platelet aggregation, Ca(2+) mobilization, and PLC-gamma 2 tyrosine phosphorylation. Finally, WGA induced PECAM-1 tyrosine phosphorylation and cytoskeletal reorganization in vascular endothelial cells. Our results suggest that (i) PECAM-1 is involved in WGA-induced platelet activation, (ii) PECAM-1 clustering by WGA activates unique and strong platelet signaling pathways, leading to a rapid PLC activation via Src family kinases, and (iii) WGA is a useful tool for elucidating PECAM-1-mediated signaling with wide implications not confined to platelets.  相似文献   

2.
The suppressive effect of wheat germ agglutinin (WGA) on lectin-stimulated blastogenesis and immunoglobulin production was studied. Addition of WGA at 10 micrograms/ml inhibited phytohemagglutinin (PHA)-, concanavalin-A (Con-A)-, and pokeweed mitogen (PWM)-induced mitogenic responses by 70-80%. PWM-driven immunoglobulin synthesis was suppressed by 45% with WGA. The inhibitory effects of WGA were not due to cell death or to interference with lectin binding at the cell surface. Inhibition was dependent on the presence of WGA in the cell culture during the first 24 hr of mitogen exposure and was observed in cultures of both monocyte-depleted peripheral blood mononuclear cells as well as T-cell-enriched populations. WGA-induced inhibition of blastogenesis was blocked by the addition of N-acetylglucosamine (GluNAc) which prevents WGA binding to the cell surface. WGA was found to mimic the suppressive effect of a soluble immune suppressor supernatant (SISS) derived from Con-A-activated mononuclear cell cultures. PHA responses were inhibited by 80 and 95% with SISS and WGA, respectively. The inhibition by both WGA and SISS was totally reversed with addition of GluNAc. Furthermore, WGA and SISS demonstrated competition for the same cell surface receptor site. WGA may therefore be useful as an in vitro model of a saccharide-specific, biologically relevant, soluble mediator for the investigation of mechanisms of immunologic suppression.  相似文献   

3.
In human platelets, wheat germ agglutinin (WGA) induced serotonin release without cell agglutination. WGA induced the phosphorylation of both 40-kDa and 20-kDa proteins in a parallel manner, and at least, the phosphorylation of 40-kDa protein was preceded by transient formation of endogenous diacylglycerol (DG) accompanied by a decrease in phosphatidylinositol (PI). Both phosphorylation of these two proteins and serotonin release were inhibited by prior treatment of platelets with dibutyryl cyclic AMP, W-7, or TMB-8. These results suggest that both phosphatidylinositol turnover and Ca2+ mobilization play an essential role in WGA-induced platelet activation.  相似文献   

4.
We have employed immunofluorescence with a rat kidney Na+/K+-ATPase polyclonal antibody to investigate the cellular distribution and timing of appearance of this enzyme during preimplantation development. The enzyme is first detected in the late morula within the cytoplasm of each blastomere. When cavitation begins this distribution changes dramatically to a ring encircling the blastocoel, restricted to the basolateral cell margins. Using this enzyme as a marker for cavitation, we examined its expression in embryos that had been treated with wheat germ agglutinin (WGA), which causes cleavage arrest and was reported to trigger premature compaction- and cavitation-like events in early cleavage stages (L. V. Johnson, 1986, Dev. Biol. 113, 1-9). Although WGA-treated 2-,4-, and 8-cell embryos quickly underwent compaction- and cavitation-like events, no Na+/K+-ATPase expression was observed. Thus the WGA effect does not likely involve acceleration of the developmental program for cavitation. Embryos arrested at the 8-cell stage but cultured overnight to Day 4, however, expressed the enzyme in the typical blastocyst pattern (around each fluid-filled cavity). We conclude that Na+/K+-ATPase expression is initiated or increases dramatically in the late morula and is independent of cytokinesis. The enzyme assumes a distribution during cavitation consistent with its presumed role in transtrophectodermal fluid transport.  相似文献   

5.
In this study of lectin-induced apoptosis we found that wheat germ agglutinin (WGA) initiated an accelerated type of programmed cell death developing after only 30 min of incubation with tumor cells. To analyze possible mechanisms, studies were focused using the WGA lectin whose carbohydrate specificity is well defined. We found that WGA could induce apoptosis by binding to either N-acetylneuraminic acid or N-acetylglucosamine (GlcNAc) on the cell surface of normal and malignant cells. We also showed that it is unlikely that WGA triggers apoptosis by binding to the carbohydrate portion of Fas. CrmA gene transfection did not inhibit WGA-mediated apoptosis of Jurkat cells. In addition, Jurkat-R cells selected for resistance to Fas signaled apoptosis manifested high sensitivity to WGA as did Fas-negative BL6 melanoma cells. WGA-induced apoptosis is also caspase-3-independent and was found to be triggered via a mitochondrial pathway. WGA induced a loss of transmembrane potential, disruption of the inner mitochondria membrane, and release of cytochrome c and caspase-9 activation after 30 min of cell interaction. Interestingly, Bcl-2 gene transfection did not affect sensitivity of Jurkat cells to WGA. The Jurkat-R subline that has been shown to be Bax and Bak deficient and resistant to various apoptotic signals was highly sensitive to WGA-induced apoptosis. In summary, WGA triggers a unique pattern of apoptosis that is extremely fast, Fas- and caspase-3-independent, and is mediated via a mitochondrial pathway. However, its mitochondrial component is unrestrained by the loss of Bax and Bak or the upregulation of Bcl-2 expression.  相似文献   

6.
Chlorpromazine, administered to pregnant CBA mice 56 h after copulation in single doses of 10 or 15 mg/kg bodyweight, inhibited the compaction of embryos, formation of blastocysts, and reduced the mitotic index and cell number of embryos 86 h after copulation but did not adversely influence their viability or induce structural chromosomal aberrations. Blastocyst formation was more severely affected than embryo compaction. When 86-h embryos were treated with chlorpromazine (10 or 15 mg/kg) and subsequently cultured for 120 h, there was delayed hatching from the zona pellucida, delayed attachment to the culture dish, outgrowth of the trophoblast and expansion of the inner cell mass. Mice treated identically and evaluated on the 18th day of gestation had fewer implanted embryos than did controls, and the fetuses weighed less. No resorptions, malformations or significant differences in intrauterine deaths were found. Chlorpromazine given in the same manner but at 0.5 mg/kg did not affect any of the aforementioned criteria. When 56 h embryos were cultured in vitro in the presence of 50 microM-chlorpromazine for a further 40 h, embryo compaction, blastocyst formation, the mitotic index and the total cell number were significantly reduced compared with controls. Blastocyst formation was again more severely affected than embryo compaction. The inhibition of embryo compaction, blastocyst formation, and reduction in mitotic index and cell number associated in this study with chlorpromazine in vivo and in vitro indicate that the drug inhibits the development of cleavage-stage embryos in the mouse. These effects might be mediated by antagonistic effects of calmodulin.  相似文献   

7.
The PT-digest of bread wheat gliadin was very active in agglutinating undifferentiated human K562(S) cells. This activity was quantitatively, but not qualitatively, similar to that of Con A or WGA. Moreover, Con A-induced cell agglutination was inhibited by mannan and mannose, WGA-induced agglutination by NAG only, and cell agglutination induced by bread wheat gliadin peptides was inhibited by each of these three saccharides. Not only was mannan the most active saccharide in preventing cell agglutination induced by bread wheat gliadin peptides, but it was also able to dissociate agglutinated cells. As compared to the PT- digest of whole bread wheat gliadin, the digest obtained from purified A-gliadin was tenfold more active. The PT-digest of durum wheat gliadin did not show any agglutinating activity.  相似文献   

8.
《The Journal of cell biology》1985,101(5):1690-1694
The binding of nerve growth factor (NGF) to specific cell surface receptors initiates a variety of effects that lead to the morphological and biochemical differentiation of clonal pheochromocytoma, PC12, cells. The lectin wheat germ agglutinin (WGA) alters the characteristics of NGF-receptor interaction. We have found that treatment of PC12 cells with WGA dramatically and reversibly inhibits the ability of NGF to elicit three distinct biological effects characteristic of NGF action. Two of these events, the rapid ruffling of cell-surface membranes and the stimulation of the phosphorylation of a 250-kD cytoskeletal protein in situ, occur rapidly and are an immediate consequence of receptor occupancy. Both of these effects are blocked by pretreatment of the cells with WGA. WGA was also found to inhibit the NGF-stimulated regeneration of neurites that occurs over 1- 2 d. Both the WGA inhibition of neurite outgrowth and the phosphorylation of the 250-kD cytoskeletal protein were reversed upon addition of the specific sugar N-acetylglucosamine. These data demonstrate that the WGA-induced changes in the NGF-receptor interaction reflect important alterations in the ability of the receptor to transmit biological signals, resulting in the abrogation of the biological effects of NGF on these cells.  相似文献   

9.
This study attempts to assess the developmental importance of cell surface glycoconjugates of preimplantation mouse embryos. This was done by incubating early embryos in various lectins and analyzing subsequent development. If specific cell surface glycoconjugates (lectin receptors) are linked to specific developmental processes, such as cell division, compaction, and blastocyst formation, then different lectins should block these different developmental processes. The results show that wheat-germ agglutinin (WGA; N-acetyl-D-glucosamine-specific) at 50 μg/ml prevents the cell division of four-cell embryos. However, this effect of WGA occurs only in embryos with intact zonae pellucidae. Concanavalin A (Con A; α-D-glucose and α-D-mannose-specific) treatment, 20 μg/ml, of four-cell or early eight-cell embryos prevents compaction, the first major change in cell shape in early mouse embryogenesis. Divalent succinly Con A does not affect development, suggesting that the Con A effect is due to crosslinking of cell surface glycoconjugates. Exposure of four-cell or early eight-cell embryos to 10 μg/ml Lotus Tetragonolobus puprureas agglutinin (LTA; α-L-fucose-specific) or 25 μg/ml Limulus polyphemus agglutinin (LPA; sialic acid-specific) allows compaction or development to the morula stage, but blocks blastocyst formation. All lectins tested retard cell division to some extent. Late morulae and early blastocysts are more resistant than earlier stages to all of the lectins studied. This study demonstrates that very low concentrations of these lectins affect different developmental processes, presumably based upon their sugar specificities.  相似文献   

10.
Involvement of calmodulin-dependent processes in preimplantation development of mouse embryos was studied with the use of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a specific antagonist of calmodulin. At 25 microM, W-7 interfered with compaction of eight-cell embryos, caused decompaction of compacted eight-cell embryos, inhibited cavitation of late morulae, and caused collapse and degeneration of blastocysts. These effects of W-7 appear to be due to specific inhibition of calmodulin-dependent processes, because W-5, a less active analogue of W-7, was less effective in interfering with development; at 25 microM, W-5 had only a slight effect on compaction and had no effect on blastocyst formation, maintenance of blastocoels, or post-blastocyst development. In addition to the developmental effects just described, W-7 inhibited cell proliferation in four-cell embryos and reduced cell numbers of morulae after treatment at the two- to eight-cell stages. There was a marked increase in embryos' sensitivity to W-7 at the late morula stage, and the sensitivity increased further as embryos developed into blastocysts; the effects of W-7 were largely reversible after treatment at the two-cell through the compacted eight-cell stages, but not after treatment at the late morula or blastocyst stage. At the blastocyst stage, inner cell mass cells appeared to be slightly more resistant to W-7 than trophectoderm cells. This differential sensitivity became more pronounced at the late blastocyst stage: after 3.5-4-h exposure of late blastocysts to 25 microM W-7, all trophectoderm cells degenerated but most of the inner cell masses survived. From these results it appears that calmodulin-dependent processes are involved in development of mouse embryos at all of the preimplantation stages examined.  相似文献   

11.
A strategy involving the conjugation of fluorescent quantum dot (QD) with wheat germ agglutinin (WGA) acting as fluorescent and topographic probes prior to cell surface staining is developed for fluorescence microscopy and atomic force microscopy (AFM). This strategy provided at least two advantages: (a) an amplified fluorescence of WGA-QD aggregates, strongly resistant to photobleaching, ensures repeated/real-time observations of the probe-labeled cells by fluorescence microscopy; (b) the enlarged size of WGA-QD probe makes it possible for labeled WGA to be distinguished from other membrane proteins by AFM. Here, the random distribution of WGA-binding sites on non-crosslinked cells and the uneven or polarized reorganization due to WGA-induced crosslinking on cell surfaces were studied using AFM-detectable WGA-QD probe. Moreover, we developed a method to rapidly detect the WGA-induced rigidity alternation of the whole cells, which is efficient and has the potentiality of being developed to a useful tool in clinical diagnosis.  相似文献   

12.
Recently, it has become evident that stimulated phosphoinositide (PI) hydrolysis plays a crucial role in early T lymphocyte activation. We have investigated the effects of the nonmitogenic lectin wheat germ agglutinin (WGA) on several parameters associated with PI hydrolysis in human T cells. It was found that WGA was as effective as anti-T3 antibody and PHA in producing a rise in cytosolic free Ca++ ((Ca++)i) in blood T cells and in cells of the T cell line CCRF-CEM. It was inferred that identical cells within the blood T cell preparation responded to each of the three agents, refuting the contention that WGA only stimulated a subfraction of circulating mature T lymphocytes. WGA-induced, but not PHA-induced rises in (Ca++)i could be blocked completely by N-acetyl-D-glucosamine, demonstrating that the sugar-binding characteristics of the lectin dictate its action on T lymphocytes. Anti-T3 antibody, PHA, and WGA all initiated inositol phosphate formation in blood T cells, indicating that each of the agents stimulated PI hydrolysis. The combination of WGA with nonmitogenic amounts of phorbol-12-myristate-13-acetate resulted in strong mitogenicity. It is concluded that WGA, like anti-T3 antibody and PHA, is a pan-T activator of PI hydrolysis.  相似文献   

13.
The preimplantation development of the mouse embryo leads to the divergence of the first two cell lineages, the inner cell mass and the trophectoderm. The formation of a microvillus pole during compaction at the eight-cell stage and its asymmetric inheritance during mitosis are key events in the emergence of these two cell populations. Ezrin, a member of the ERM protein family, seems to be involved in the formation and stabilization of this apical microvillus pole. To further characterize its function in early development, we mutated the key residue T567, which was reported to be essential for regulation of ezrin function through phosphorylation. Here, we show that expression of ezrin mutants in which the COOH-terminal threonine T567 was replaced by an aspartate (to mimic a phosphorylated residue; T567D) or by an alanine (to avoid phosphorylation; T567A) interferes with E-cadherin function and disrupts the first morphogenetic events of development: compaction and cavitation. The active mutant ezrin-T567D induces the formation of numerous and abnormally long microvilli at the surface of blastomeres. Moreover, it localizes all around the cell cortex and inhibits cell-cell adhesion and cell polarization at the eight-cell stage. During the following stages, only half of the embryos are able to compact and finally to cavitate. In those embryos, the amount of ezrin-T567D decreases in the basolateral areas, while the proportion of adherens junctions increases. The reverse inactive mutant ezrin-T567A is mainly cytoplasmic and does not perturb compaction at the eight-cell stage. However, at the 16-cell stage, it relocalizes at the basolateral cortex, leading to a strong decrease in the surface of adherens junctions, and finally, embryos abort development. Our results show that ezrin is directly involved in the formation of microvilli in the early mouse embryo. Moreover, they indicate that maintenance of ezrin in basolateral areas prevents microvilli breakdown and inhibits the formation of normal cell-cell contacts mediated by E-cadherin, thereby impairing blastomeres polarization and morphogenesis of the blastocyst.  相似文献   

14.
Two- to four-cell and eight-cell mouse embryos were incubated in various fucosylated and unfucosylated oligosaccharides, fucose binding protein, and fucosylated BSA. Compaction at the eight-cell stage was reversed by a mixture containing the oligosaccharides lacto-N-fucopentaose II (80-90%), in which fucose is linked alpha(1-4) to N-acetylglucosamine, and lacto-N-fucopentaose III (10-20%), in which fucose is linked alpha(1-3) to N-acetylglucosamine. Pure lacto-N-fucopentaose III (LNFP III) and 3-fucosyl lactose (containing fucose alpha(1-3)glucose) had a similar effect. All three molecules affected blastocyst formation. Various closely related fucosylated and unfucosylated oligosaccharides did not induce decompaction or inhibit blastocyst formation. The proportion of embryos incubated from the two- to four-cell stage in LNFP II/III which reached the eight-cell stage and formed blastocysts was reduced. Those which formed compact morulae subsequently decompacted. Precompact or early compacting eight-cell embryos incubated in LNFP II/III compacted normally but subsequently decompacted and failed to form blastocysts. Decompaction of eight-cell embryos in LNFP II/III occurred during a specific period of development (80-90 hr post-hCG) and was reversible up to 84-86 hr post-hCG, but not by 92 hr post-hCG. The period of sensitivity to LNFP II/III was associated with the decrease in the ability of calcium-free medium to cause decompaction. It appears that LNFP II/III interferes with a later calcium-independent phase of compaction and we propose that LNFP III and II inhibit an endogenous lectin-saccharide interaction between membranes involved in the stabilization of compaction.  相似文献   

15.
16.
The T3-Ti complex appears to play a central role in the activation of T cells by antigens and mitogens. Wheat germ agglutinin (WGA) is a unique lectin which inhibits T cell proliferation induced by mitogens, but it also induces marked IL 2 production by peripheral blood T cells. The pattern of responses induced by WGA suggests that this lectin may use a different mechanism of T cell activation other than the mechanism employed by the common T cell stimulants. We first investigated the production of IL 2 by Jurkat cells (E6-1) stimulated with WGA, before and after modulation of the surface T3-Ti complex. IL 2 production was markedly reduced after modulation of the T3 antigen from the cell surface when these cells were stimulated with PHA. In contrast, little change was observed in WGA-induced IL 2 production after modulation. Furthermore, we examined the effect of WGA on a T3-mutant of E6-1 cells (T3.1) which does not produce IL 2 in response to PHA or PHA plus PMA. WGA-stimulated T3.1 cells produced a significant amount of IL 2 with or without added PMA. In addition, a small but consistent rise in intracytoplasmic free calcium was observed when these cells were stimulated with WGA. These results demonstrate the presence of an alternative mechanism of T cell activation independent of the T3-Ti complex.  相似文献   

17.
18.
Sea urchin eggs stained with fluorescein-conjugated wheat germ agglutinin (F-WGA) before or after fixation showed a marked accumulation of fluorescence at the cleavage furrow in the first and the second cell divisions. WGA receptors (WGA-binding membrane glycoproteins) were redistributed to the equatorial region through several steps in compressed eggs. Accumulated WGA receptors showed a distribution similar to that of contractile-ring microfilaments throughout most of the steps. Therefore, the former is probably associated with the latter directly or indirectly. Labeling with F-WGA provides a simple method to detect contractile-ring microfilaments in living eggs. Treatment of eggs with colcemid shortly before cytokinesis dispersed the ring-like accumulation of WGA receptors together with contractile-ring microfilaments. This result suggests that microtubule structures, probably asters, are involved in the redistribution of WGA receptors. Cytochalasin B prevented furrowing when it was applied shortly before cytokinesis. While contractile-ring microfilaments showed a spotty distribution in the expected furrow region, WGA receptors were normally redistributed. Furthermore, a higher concentration of the drug allowed the appearance of accumulated WGA receptors in compressed eggs although the development into a ring-like configuration was inhibited. These observations suggest the possibility that the redistribution of WGA receptors is involved in the formation of contractile ring.  相似文献   

19.
The lectin, wheat germ agglutinin (WGA), is synthesized de novo by developing wheat (Triticum aestivum, L.) embryos but is not synthesized or localized in developing endosperm as shown by radioimmunoassay. Young embryos removed from the grain and cultured on a defined medium germinate precociously and concomitantly cease WGA synthesis. In vitro precocious germination of young embryos is reversibly inhibited by low levels (1–100 μM) of the plant growth substance abscisic acid (ABA). Embryos inhibited from germinating by this growth regulator not only continue synthesizing WGA, but do so at an accelerated rate when compared with embryos left associated with the grain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号