首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polypeptides encoded by a putative methanol oxidation (mox) operon of Methylobacterium sp. strain AM1 were expressed in Escherichia coli, using a coupled in vivo T7 RNA polymerase/promoter gene expression system. Two mox genes had been previously mapped to this region: moxF, the gene encoding the methanol dehydrogenase (MeDH) polypeptide; and moxG, a gene believed to encode a soluble type c cytochrome, cytochrome cL. In this study, four polypeptides of Mr 60,000, 30,000, 20,000, and 12,000 were found to be encoded by the moxFG region and were tentatively designated moxF, -J, -G, and -I, respectively. The arrangement of the genes (5' to 3') was found to be moxFJGI. The identities of three of the four polypeptides were determined by protein immunoblot analysis. The product of moxF, the Mr-60,000 polypeptide, was confirmed to be the MeDH polypeptide. The product of moxG, the Mr-20,000 polypeptide, was identified as mature cytochrome cL, and the product of moxI, the Mr-12,000 polypeptide, was identified as a MeDH-associated polypeptide that copurifies with the holoenzyme. The identity of the Mr-30,000 polypeptide (the moxJ gene product) could not be determined. The function of the Mr-12,000 MeDH-associated polypeptide is not yet clear. However, it is not present in mutants that lack the Mr-60,000 MeDH subunit, and it appears that the stability of the MeDH-associated polypeptide is dependent on the presence of the Mr-60,000 MeDH polypeptide. Our data suggest that both the Mr-30,000 and -12,000 polypeptides are involved in methanol oxidation, which would bring to 12 the number of mox genes in Methylobacterium sp. strain AM1.  相似文献   

2.
Genetics of carbon metabolism in methylotrophic bacteria   总被引:1,自引:0,他引:1  
Abstract The application of genetic techniques to the methylotrophic bacteria has greatly enhanced studies of these important organisms. Two methylotrophic systems have been studied in some detail, the serine cycle for formaldehyde assimilation and the methanol oxidation system. In both cases, genes have been cloned and mapped in Methylobacterium species (facultative serine cycle methanol-utilizers). In addition, methanol oxidation genes have been studied in an autotrophic methanol-utilizer ( Paracoccus denitrificans ) and three methanotrophs ( Methylosporovibrio methanica, Methylomonas albus and Methylomonas sp. A4). Although much remains to be learned in these systems, it is becoming clear that the order of C1 genes has been conserved to some extent in methylotrophic bacteria, and that many C1 genes are loosely clustered on the chromosome. Operons appear to be rare, but some examples have been observed. The extension of genetic approaches to both the obligate and facultative methylotrophs holds much promise for the future in understanding and manipulating the activities of these bacteria.  相似文献   

3.
Abstract For a number of years we have tried to isolate versatile methylotrophic bacteria employing the ribulose monophosphate (RuMP) cycle of formaldehyde fixation. Recently this has resulted in the development of techniques for the selective enrichment and isolation in pure culture of Bacillus strains able to grow in methanol mineral medium over a temperature range between 35 and 60°C. At the optimum growth temperatures (50–55°C), these isolates display doubling times between 40 and 80 min. The metabolism of the strains studied is strictly respiratory. Methanol assimilation is exclusively via the RuMP cycle variants with the fructose bisphosphate (FBP) aldolase cleavage and transketolase (TK)/transaldolase (TA) rearrangement. Whole cells were unable to oxidize formate, and no activities of NAD-(in)dependent formaldehyde and formate dehydrogenases were detected. Formaldehyde oxidation most likely proceeds via the so-called dissimilatory RuMP cycle. The initial oxidation of methanol is catalyzed by an NAD-dependent methanol dehydrogenase present as an abundant protein in all strains. The enzyme from Bacillus sp. C1 has been purified and characterized.  相似文献   

4.
5.
Mutants of the methylotrophic yeast Hansenula polymorpha deficient in NAD-dependent formaldehyde or formate dehydrogenases have been isolated. They were more sensitive for exogenous methanol but retained the ability for methylotrophic growth. In the medium with methanol the growth yields of the mutant 356–83 deficient in formaldehyde dehydrogenase and of the wild-type strain were identical (0.34 g cells/g methanol) under chemostat cultivation. These results indicate that enzymes of direct formaldehyde oxidation are not indispensable for methylotrophic growth. At the same time inhibition of tricarboxylic acid cycle has resulted in suppression of growth in the media with multicarbon nonfermentable substrates such as glycerol, succinate, ethanol and dihydroxyacetone as well as with methanol, but not with glucose. In the experiments with the wild-type strain H. polymorpha it has been shown that citrate and dihydroxyacetone inhibit the radioactivity incorporation from 14C-methanol into CO2. All obtained data indicate that for the dissimilation of methanol and the supplying of energy for methylotrophic growth, the functioning of tricarboxylic acid cycle reactions as oppossed to those of direct formaldehyde oxidation is essential.  相似文献   

6.
Abstract A spontaneous Thiosphaera pantotropha mutant (Tp9002) that is able to grow on methanol has been isolated. With hybridization experiments it has been demonstrated that mxaF , the gene encoding the large subunit of methanol dehydrogenase, is absent from T. pantotropha . In Tp9002, a dye-linked enzyme activity was found with a substrate specificity similar to that of the dye-linked ethanol dehydrogenase from Pseudomonas aeruginosa . The N-terminus of a 26-kDa cytochrome c , exclusively synthesized in Tp9002, is homologous to the N-terminus of the electron acceptor of ethanol dehydrogenase. These results suggest that in Tp9002 a dye-linked ethanol dehydrogenase is responsible for methanol oxidation, using a 26-kDa cytochrome c as electron acceptor.  相似文献   

7.
8.
Catalase has been partially purified from cell-free extracts of methanol-grown Hansenula polymorpha and its peroxidative properties were studied. It was shown that the enzyme is capable of oxidizing methanol, formaldehyde and formate in the presence of hydrogen peroxide. The physiological significance of these reactions in the transduction of energy from the oxidation of methanol in yeasts is discussed.  相似文献   

9.
The primary metabolic fate of methanol is oxidation to formaldehyde and then to formate by enzymes of the liver. Cytochrome P-450 and a role for the hydroxyl radical have been implicated in this process. The aim of the paper was to study the liver antioxidant defense system in methanol intoxication, in doses of 1.5, 3.0 and 6.0 g/kg b.w., after methanol administration to rats. In liver homogenates, the activities of Cu, Zn-superoxide dismutase and catalase were significantly increased after 6 h following methanol ingestion in doses of 3.0 and 6.0 g/kg b.w. and persisted up to 2-5 days, accompanied by significant decrease of glutathione reductase and glutathione peroxidase activities. The content of GSH was significantly decreased during 6 hours to 5 days. The liver ascorbate level was significantly diminished, too, while MDA levels were considerably increased after 1.5, 3.0 and 6.0 g/kg b.w. methanol intoxication. Changes due to methanol ingestion may indicate impaired antioxidant defense mechanisms in the liver tissue.  相似文献   

10.
11.
Abstract Using inocula from a variety of sources, mixed cultures of methanol-utilizing Bacillus strains were enriched readily at 55°C. Isolation of pure cultures was difficult; the six strains that were obtained eventually in pure culture all possessed the RuMP pathway, grew rapidly on methanol at temperatures up to 60° C, and were tolerant to very high methanol concentrations. An NAD-dependent alcohol dehydrogenase appeared to be involved in the initial oxidation of methanol.  相似文献   

12.
By using the moxF gene encoding the large fragment of methanol dehydrogenase as a probe, a downstream linked chromosomal fragment was isolated from a genomic bank of Paracoccus denitrificans. The nucleotide sequence of the fragment was determined and revealed the 3' part of moxF, four additional open reading frames, and the 5' part of a sixth one. The organization and deduced amino acid sequences of the first three frames downstream from moxF were found to be largely homologous to the moxJ, moxG, and moxI gene products of Methylobacterium extorquens AM1. Directly downstream from these three genes, a new mox gene was identified. The gene is designated moxR. By using the suicide vector pGRPd1, the moxJ, moxG, and moxR genes were inactivated by the insertion of a kanamycin resistance gene. Subsequently, suicide vector pRVS1 was used to replace the marker genes in moxJ and moxG for unmarked deletions made in vitro. As a result, the three insertion strains as well as the two unmarked mutant strains were unable to grow on methanol, even in the presence of pyrroloquinoline quinone. Growth on succinate and on methylamine was not affected. In all five mutant strains, synthesis of the large subunit of methanol dehydrogenase and of inducible cytochrome c553i was observed. The moxJ and moxG insertion mutant strains were unable to synthesize both the cytochrome c551i and the small subunit of methanol dehydrogenase, and this lack of synthesis was attended by the loss of methanol dehydrogenase activity. The moxJ deletion mutant strain partly synthesized the latter two proteins, cytochrome c551i. Partial synthesis of the small subunit of methanol dehydrogenase observed with the latter strain was attended by a corresponding extent of methanol dehydrogenase activity. The moxR insertion mutant strain was shown to synthesize cytochrome c551i as well as the large and small subunits of methanol dehydrogenase, but no methanol dehydrogenase activity was observed. The results show that periplasmic cytochrome c551i is the moxG gene product and the natural electron acceptor of methanol dehydrogenase in P. denitrificans. In contrast to earlier suggestions, this cytochrome was found to be different from membrane-bound cytochrome c552. In addition, it is demonstrated that moxI encodes the small subunit of methanol dehydrogenase. It is suggested that MoxJ is involved in the assemblage of active methanol dehydrogenase in the periplasm and, in addition, that MoxR is involved in the regulation of formation of active methanol dehydrogenase.  相似文献   

13.
Previous reports that whole cells of Methylophilus methylotrophus oxidase exogenous NADH have been investigated. Essentially identical rates of oxygen consumption were observed following the addition of methanol or NADH to whole cells. Both activities were inhibited by EDTA and hydroxylamine, but not by HQNO, and exhibited similar pH optima. Analyses of the reaction stoichiometry with NADH as substrate showed that the expected amount of oxygen was consumed, but also revealed acidification (instead of alkalinisation) and no oxidation of NADH. Further studies showed that commerical NADH is contaminated with ethanol which is oxidised to acetic acid by the low specificity methanol oxidase system present in this organism. The oxidation of exogenous NADH by whole cells of M. methylotrophus reported previously is therefore spurious.Abbreviations EDTA = ethylenediaminetetracetate - HQNO = 2–n-heptyl-4-hydroxy-quinoline-N-oxide - DEAE = diethylaminoethyl  相似文献   

14.
Two genetically distinct classes of novobiocin-supersensitive mutants were isolated from Escherichia coli K-12. One class, given the phenotypic name NbsA, lies at 10 min on the E. coli chromosome. The order of the genes in this region, based on transductional analyses, is proC NbsA plsA purE. The second, NbsB, lies at 80 min. The order of the genes in this region, based on transduction analyses, is xyl cysE NbsB pyrE. Both classes of mutants show increased sensitivity to hydrophobic drugs but are different: NbsA cells tend to be more sensitive to cationic agents, whereas NbsB cells show the opposite tendency. The sole detectable biochemical alteration in NbsA strain is greater than 90% reduction in the phosphate content of the lipid A region of the lipopolysaccharide. The NbsB mutation results in lipopolysaccharide that contains primarily the stereoisomer D-glycero-D-mannoheptose, rather than L-glycero-D-mannoheptose, and which contains very little of the distal sugars. Since NbsA strains have apparently normal outer membrane proteins and total cellular phospholipids, changes solely in lipopolysaccharide can increase permeability to certain hydrophobic antibiotics. Complementation studies indicate that the NbsA marker is probably allelic with acrA. In addition, the NbsB marker is genetically and phenotypically similar to the rfaD locus of Salmonella typhimurium. For this reason, the phenotypic designations NbsA and NbsB have been changed to the genotypic designations acrA and rfaD, respectively.  相似文献   

15.
Synthetic methylotrophy aims to engineer methane and methanol utilization pathways in platform hosts like Escherichia coli for industrial bioprocessing of natural gas and biogas. While recent attempts to engineer synthetic methylotrophs have proved successful, autonomous methylotrophy, i.e. the ability to utilize methane or methanol as sole carbon and energy substrates, has not yet been realized. Here, we address an important limitation of autonomous methylotrophy in E. coli: the inability of the organism to synthesize several amino acids when grown on methanol. By activating the stringent/stress response via ppGpp overproduction, or DksA and RpoS overexpression, we demonstrate improved biosynthesis of proteinogenic amino acids via endogenous upregulation of amino acid synthesis pathway genes. Thus, we were able to achieve biosynthesis of several limiting amino acids from methanol-derived carbon, in contrast to the control methylotrophic E. coli strain. This study addresses a key limitation currently preventing autonomous methylotrophy in E. coli and possibly other synthetic methylotrophs and provides insight as to how this limitation can be alleviated via stringent/stress response activation.  相似文献   

16.
Abramova NE  Cohen BD  Sertil O  Kapoor R  Davies KJ  Lowry CV 《Genetics》2001,157(3):1169-1177
The DAN/TIR genes of Saccharomyces cerevisiae encode homologous mannoproteins, some of which are essential for anaerobic growth. Expression of these genes is induced during anaerobiosis and in some cases during cold shock. We show that several heme-responsive mechanisms combine to regulate DAN/TIR gene expression. The first mechanism employs two repression factors, Mox1 and Mox2, and an activation factor, Mox4 (for mannoprotein regulation by oxygen). The genes encoding these proteins were identified by selecting for recessive mutants with altered regulation of a dan1::ura3 fusion. MOX4 is identical to UPC2, encoding a binucleate zinc cluster protein controlling expression of an anaerobic sterol transport system. Mox4/Upc2 is required for expression of all the DAN/TIR genes. It appears to act through a consensus sequence termed the AR1 site, as does Mox2. The noninducible mox4Delta allele was epistatic to the constitutive mox1 and mox2 mutations, suggesting that Mox1 and Mox2 modulate activation by Mox4 in a heme-dependent fashion. Mutations in a putative repression domain in Mox4 caused constitutive expression of the DAN/TIR genes, indicating a role for this domain in heme repression. MOX4 expression is induced both in anaerobic and cold-shocked cells, so heme may also regulate DAN/TIR expression through inhibition of expression of MOX4. Indeed, ectopic expression of MOX4 in aerobic cells resulted in partially constitutive expression of DAN1. Heme also regulates expression of some of the DAN/TIR genes through the Rox7 repressor, which also controls expression of the hypoxic gene ANB1. In addition Rox1, another heme-responsive repressor, and the global repressors Tup1 and Ssn6 are also required for full aerobic repression of these genes.  相似文献   

17.
Hansenula polymorpha has been grown in a methanol-limited continuous culture at a variety of dilution rates. Cell suspensions of the yeast grown at a dilution rate of 0.16 h-1 showed a maximal capacity to oxidize excess methanol (QO 2 max ) which was 1.6 times higher than the rate required to sustain the growth rate (Q O2). When the dilution rate was decreased to 0.03 h-1, QO 2 max of the cells increased to a value of more than 20 times that of Q O2. The enzymatic basis for this tremendous overcapacity for the oxidation of excess methanol at low growth rates was found to be the methanol oxidase content of the cells. The level of this enzyme increased from 7% to approximately 20% of the soluble protein when the growth rate was decreased from 0.16 to 0.03 h-1. These results were explained on the basis of the poor affinity of methanol oxidase for its substrates. Methanol oxidase purified from Hansenula polymorpha showed an apparent K mfor methanol of 1.3 mM in air saturated reaction mixtures and the apparent K mof the enzyme for oxygen was 0.4 mM at a methanol concentration of 100 mM.The involvement of an oxygen dependent methanol oxidase in the dissimilation of methanol in Hansenula polymorpha was also reflected in the growth yield of the organism. The maximal yield of the yeast was found to be low (0.38 g cells/g methanol). This was not due to a very high maintenance energy requirement which was estimated to be 17 mg methanol/g cells x h.  相似文献   

18.
Under nitrogen atmosphere, methanol oxidase isolated from Candida boidinii catalyzes no hydrogen exchange of ethanol. Reactions with (1R)[1-3H]ethanol or (1S)[1-3H]ethanol occur stereoselectively. The ratio of hydrogen abstraction in the oxidation of ethanol is about 7:1 in favor of the pro R hydrogen atom. The isotope effect kH/k3H is 2 - 2.5 for (1R)[1-3H]ethanol. The isotope effects on Km and V have been determined for four different deuterium-labelled ethanols. The Km for [2H3]methanol is nearly twice that for CH3OH. That is about the same ratio as for ethanol/methanol. For the oxidation of CH3OH and 2H3COH, the ratio of VH/V2H3 = 2.44, while the ratio for methanol/ethanol is only 1.3. It has been conformed that catalase from bovine liver eliminates only the pro R hydrogen atom from ethanol. The isotope effect for the catalase-catalyzed oxidation of (1R)[1-3H]ethanol is 2.1.  相似文献   

19.
A total of 687 DNA sequence accessions from the Mendel database (release 1.04, 3 November 1994) assigned standardized designations for plant genes and gene products were used in aBLAST similarity search of 7557 rice partial cDNA sequences and 287 other rice sequences from the Japanese Rice Genome Research Program. We describe procedures for data manipulation, import and export from and to Macintosh and Unix, and the use of 4th Dimension relational database management system (RDBMS) in data processing. Altogether 275 sequences showed strong similarity hits. Using the CPGN nomenclature, we assign putative designations for genes and gene products. Assignments include representatives of 26 gene products, including 58 cDNA sequences similar to α-tubulins (TubA), 23 similar to β-tubulins (TubB) and 51 similar to cytosolic subunit C of glyceraldehyde-3-phosphate dehydrogenase (NAD) (GapC). The results of the similarity searches are listed and are also available electronically. The assignments have been submitted to the CPGN working groups for verification and for later inclusion in the GenBank/EMBL/DDBJ sequence databases, which will include the standardized designations in the accession data fields. Member of the ISPMB Commission on Plant Gene Nomenclature, representing the Rice Genome Research Program of Japan. Reprint requests to T. Sasaki.  相似文献   

20.
将华根霉脂肪酶基因克隆到甲基营养型毕赤酵母中表达,以甲醇利用快型菌株为宿主,在7 L发酵罐水平对脂肪酶基因拷贝数分别为3、5、6的3株基因重组菌——XY RCL-3、XY RCL-5、XY RCL-6进行高密度发酵调控,同时研究了甲醇浓度对表达华根霉脂肪酶的影响。结果表明,XY RCL-5在相同条件下发酵产酶能力高于XY RCL-6和XY RCL-3,最适甲醇诱导浓度控制在0.1%±0.02%时,酶活可达到12 500 U/mL,菌体干重达到204 g/L,蛋白浓度也能达到8.02 g/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号