首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A significant portion (20%) of the Physarum genome can be isolated as a HpaII-resistant, methylated fraction. Cloned DNA probes containing highly-repeated sequences derived from this fraction were used to define the pattern of structural organisation of homologous repeats in Physarum genomic DNA. It is shown that the probes detect an abundant, methylated family of sequences with an estimated genomic repetition frequency greater than 2100, derived from a large repeated element whose length exceeds 5.8kb. Sequences comprising the long repetitive element dominate the HpaII-resistant compartment and account for between 4-20% of the Physarum genome. Detailed restriction/hybridisation analysis of cloned DNA segments derived from this compartment shows that HpaII/MspI restriction sites within some copies of the long repeated sequence are probably deleted by mutation. Additionally, segments of the repeat are often found in different organisational patterns that represent scrambled versions of its basic structure, and which are presumed to have arisen as a result of recombinational rearrangement in situ in the Physarum genome. Preliminary experiments indicate that the sequences are transcribed and that the structural properties of the repeat bear some resemblance to those of transposable genetic elements defined in other eukaryotic species.  相似文献   

2.
Genetic determining factors of essential hypertension seems to involve a dynamic mutation or a similar process. The mobile elements of the genome: moderately recurrent sequences, play a special role in initiation of such a process. A possible molecular mechanism of the initiation and development of the dynamic mutation, is described.  相似文献   

3.
Fourteen novel medium reiteration frequency (MER) families were found, in the human genome, by using two different methods. Repetition frequencies per haploid human genome were estimated for each of these families as well as for six previously described MER DNA families. By these measurements, the families were found to contain variable numbers of elements, ranging from 200 to 10,000 copies per haploid human genome.  相似文献   

4.
Herpesvirus sylvilagus is a lymphotropic (type gamma) herpesvirus of cottontail rabbits (Sylvilagus floridanus). Analysis of virion DNA of herpesvirus sylvilagus has revealed that the genome consists of one stretch of about 120 kilobase pairs of internal, unique DNA flanked by a variable number of 553-base-pair tandem repeats. The G + C content of the repetitive DNA is extremely high (83%), as determined by sequencing. The organization of the herpesvirus sylvilagus genome is, therefore, similar to that of the primate lymphotropic viruses herpesvirus saimiri and herpesvirus ateles.  相似文献   

5.
H Nojima  H Sokabe 《FEBS letters》1986,207(2):227-230
We report here a new type of peculiar repetitive sequence, A15T(TC)9T12, which was detected at 750 base pairs (bp) upstream of a rat calmodulin processed pseudogene by DNA sequencing of cloned DNA fragments. This sequence element could possibly form a cruciform structure with a 12-AT-pair stem, exposing (CT)9 sequences as a loop. S1 nuclease protection experiments failed to identify this element as a cruciform structure but instead detected an alternating purine pyrimidine tract at 50 bp downstream of this element. Total genomic Southern blotting showed that the rat genome contains only a few of these elements.  相似文献   

6.
The distribution of interspersed repetitive DNA sequences in the human genome   总被引:25,自引:0,他引:25  
The distribution of interspersed repetitive DNA sequences in the human genome has been investigated, using a combination of biochemical, cytological, computational, and recombinant DNA approaches. "Low-resolution" biochemical experiments indicate that the general distribution of repetitive sequences in human DNA can be adequately described by models that assume a random spacing, with an average distance of 3 kb. A detailed "high-resolution" map of the repetitive sequence organization along 400 kb of cloned human DNA, including 150 kb of DNA fragments isolated for this study, is consistent with this general distribution pattern. However, a higher frequency of spacing distances greater than 9.5 kb was observed in this genomic DNA sample. While the overall repetitive sequence distribution is best described by models that assume a random distribution, an analysis of the distribution of Alu repetitive sequences appearing in the GenBank sequence database indicates that there are local domains with varying Alu placement densities. In situ hybridization to human metaphase chromosomes indicates that local density domains for Alu placement can be observed cytologically. Centric heterochromatin regions, in particular, are at least 50-fold underrepresented in Alu sequences. The observed distribution for repetitive sequences in human DNA is the expected result for sequences that transpose throughout the genome, with local regions of "preference" or "exclusion" for integration.  相似文献   

7.
8.
Three genomic clones were isolated from a sizeselected pig DNA library by hybridization with a DNA-fingerprint probe. Analysis at the sequence level revealed that all three clones contain interrupted stretches of triplet repeats mainly composed of CAC and CAT triplets. Evaluation of the corresponding loci for polymorphism by Southern blot hybridization showed considerable length variation. For two loci the polymorphism was also demonstrated by polymerase chain reaction (PCR) amplification. The PiGMaP reference pedigree was typed for all three loci.  相似文献   

9.
GEM is a new family of repetitive sequences detected in the D. subobscura genome. Two of the four described GEM elements encompass a heterogeneous central module, with no detectable ORF, flanked by two long inverted repeats. These elements are composed of a set of repetitive modules, which are inverted repeat (IR), direct repeat (DR), palindromic sequence (PS), long sequence (LS) and short sequence (SS). These five modules can be found either clustered or dispersed as single modules in the D. subobscura genome, in euchromatic and heterochromatic regions. In addition to the 3' region of Adh retrosequences, single IR and LS blocks were found associated with the promoter region of different genes, in particular, LS-like blocks have also been found associated with functional genes in D. melanogaster and D. virilis. Conversely, the DR block is highly similar to satellite DNAs from some other species of the obscura group. In addition, GEM elements share some structural features with IS elements described in different Drosophila species. It is likely that both GEM and IS sequences would be vestiges of an ancestral transposable element.  相似文献   

10.
Cot analysis shows that the haploid Drosophila genome contains 12% rapidly reassociating, highly reiterated DNA, 12% middle repetitive DNA with an average reiteration frequency of 70, and 70% single-copy DNA. The distribution of the middle repetitive sequences in the genome has been studied by an examination in the electron microscope of the structures obtained when middle repetitive sequences present on large DNA strands reassociate and by the hydroxyapatite binding methods developed by Davidson et al. (1973). At least one third by weight of the middle repetitive sequences are interspersed in single-copy sequences. These interspersed middle repetitive sequences have a fairly uniform distribution of lengths from less than 0.5 to 13 kb, with a number average value of 5.6 kb. The average distance between middle repetitive sequences is greater than 13 kb. The data do not exclude the possibility that essentially all of the middle repetitive sequences have the interspersion pattern described above; however, it is possible that some of the middle repetitive sequences of Drosophila are clustered in stretches of length much greater than 13 kb. The interspersion pattern of the middle repetitive sequences in Drosophila is quite different from that which occurs in the sea urchin, in Xenopus, in rat, and probably many other higher eucaryotes.  相似文献   

11.
Long and short repetitive sequences were purified from the DNA of Paracentrotus lividus under conditions designed to optimize the yield of complete, end to end sequences. Double-stranded long repeat DNA prepared in this manner ranged in length from approximately 3000 to 15 000 nucleotide pairs with average sizes of approximately 6000 base pairs. In the electron microscope, long repeat DNA was observed to possess continuous sequences that often appeared to be terminated by one or more loops and/or fold backs. Long repeat DNA sequences, resheared to 300 base pairs, were found to have an average melting point identical to that for sheared native DNA. Thus, the reassociated duplexes of long repetitive DNA seem to possess very few mismatched base pairs. Reassociation kinetic analyses indicate that the majority of the long repeat sequences are reiterated only 4--7 times per haploid amount of DNA. Melt-reassociation analyses of short repetitive DNA, at several criteria, support the previously held concept that these sequences belong the sets or families of sequences which are inexact copies of one another. Our studies also support hypotheses suggesting that short repetitive sequences belong to families which may have arisen via distinct salttatory events. The relationships between long and short repetitive DNA sequences are considered with respect to widely held concepts of their sequence organization, evolution, and possible functions within eucaryotic genomes. A model for the possible organization of short repeats within long repetitive DNA sequences is also presented.  相似文献   

12.
Repetitive DNA sequences near immunoglobulin genes in the mouse genome (Steinmetz et al., 1980a,b) were characterized by restriction mapping and hybridization. Six sequences were determined that turned out to belong to a new family of dispersed repetitive DNA. From the sequences, which are called R1 to R6, a 475 base-pair consensus sequence was derived. The R family is clearly distinct from the mouse B1 family (Krayev et al., 1980). According to saturation hybridization experiments, there are about 100,000 R sequences per haploid genome, and they are probably distributed throughout the genome. The individual R sequences have an average divergence from the consensus sequence of 12.5%, which is largely due to point mutations and, among those, to transitions. Some R sequences are severly truncated. The R sequences extend into A-rich sequences and are flanked by short direct repeats. Also, two large insertions in the R2 sequence are flanked by direct repeats. In the neighbourhood of and within R sequences, stretches of DNA have been identified that are homologous to parts of small nuclear RNA sequences. Mouse satellite DNA-like sequences and members of the B1 family were also found in close proximity to the R sequences. The dispersion of R sequences within the mouse genome may be a consequence of transposition events. The possible role of the R sequences in recombination and/or gene conversion processes is discussed.  相似文献   

13.
Measurements are reported which lead to the conclusion that repetitive and nonrepetitive sequences are intimately interspersed in the majority of the DNA of the sea urchin, Strongylocentrotus purpuratus. Labeled DNA was sheared to various lengths, reassociated with a great excess of 450 nucleotide-long fragments to cot 20, and the binding of the labeled DNA to hydroxyapatite was measured. Repetitive sequences measured in this way are present on about 42% of the 450 nucleotide-long fragments. As the DNA fragment length is increased, larger and larger fractions of the fragments contain repetitive sequences. Analysis of the measurements leads to the following estimate of the quantitative features of the pattern of interspersion of repetitive and nonrepetitive sequences. About 50% of the genome consists of a short-period pattern with 300–400 nucleotide average length repetitive segments interspersed with about 1000 nucleotide average length nonrepetitive segments. Another 20% or more consists of a longer period interspersed pattern. About 6% of the genome is made up of relatively long regions of repetitive sequences. The remaining 22% of the genome may be uninterrupted single copy DNA, or may have more widely spaced repeats interspersed. The similarity of these results to previous measurements with the DNA of an amphibian suggests that this interspersion pattern is of general occurrence and selective importance.  相似文献   

14.
In rat liver DNA, which contains only 20% repetitive sequences, a close interspersion of repetitive and unique sequences is found in about 35 % of the total DNA. The mean length of repetitive and unique alternating sequences is respectively 230 and 400 base pairs.  相似文献   

15.
Analysis of rat repetitive DNA sequences.   总被引:8,自引:0,他引:8  
Parameters of repetitive sequence organization have been measured in the rat genome. Experiments using melting, hydroxylapatite binding, and single strand specific nuclease digestion have been used to measure the number, length, and arrangement of repeated DNA sequences. Renaturation and melting or S1 nuclease digestion of 1.0 kbp DNA fragment show about 20% of rat DNA sequences are 3000-fold repeated. Renatured duplexes from 4.0 kbp DNA fragments display two repetitive size fractions after nuclease digestion. About 60% of the repeated sequences are 0.2-0.4 kbp long while the remainder are longer than 1.5 kbp. The arrangement of the repeated sequences has been measured by hydroxylapatite fractionation of DNA fragments of varying lengths bearing a repeated sequence. Repeated DNA sequences are interspersed among 2.5 kbp long nonrepeated sequences throughout more than 70% of the rat genome. There are approximately 350 different 3000-fold short repeated sequences in the rat interspersed among 600,000 nonrepeated DNA sequences.  相似文献   

16.
Recombinant clones containing the highly repetitive human DNA sequence approximately 340 base-pairs in length obtained after EcoRI digestion (αRI-DNA) were cloned in plasmid pAT153. Two clones contained a single copy of the αRI-DNA sequence, and the third had an insert with two copies of the sequence in tandem. When radioactive recombinant DNA was hybridized to total human DNA partially digested with EcoRI, a series of multiple bands was obtained up to 22 repeats in length, demonstrating that the αRI-DNA sequences occur in tandem arrays in the genomic DNA. A reassociation analysis using isolated insert DNA from one of the recombinant clones showed that the family of sequences is repeated 22,000 times in the human genome. Clones containing the αRI-DNA sequence were also isolated from a library of human genomic DNA in bacteriophage λ. Using these clones it was shown that, in at least some cases, the repetitive element is bounded by DNA less abundant than the αRI sequence.  相似文献   

17.
J Sainz  E Prats  S Ruiz  L Cornudella 《Biochimie》1992,74(12):1067-1074
The abundance of repetitive DNA in the haploid sea cucumber genome has been determined by screening a Holothuria genomic DNA library for clones containing repeated sequences using reverse genome hybridization. Analysis by in situ plaque hybridization of a set of 1132 clones has revealed the presence of repetitive DNA sequences in about 38.1% of the clones screened. The distribution of the reiterated DNA has been further analyzed by restriction endonuclease digestion of seven randomly selected repetitive clones. The repeated sequences have a fairly uniform distribution of lengths with an average length value of 7.3 kb. Analysis of the measurements suggests that the repetitive sequences are interspersed among longer single copy sequences with an average spacing interval of about 47.3 kb indicating that the repetitive and single copy DNA in the Holothuria genome are arranged in a long-period interspersion pattern.  相似文献   

18.
A new family of highly repetitive sequences which are dispersed in bovine genome is described. The members of the family are visible on agarose or polyacrylamide gels as a diffused band about 510 bp in length arising after digestion with PstI restriction nuclease. This family of fragments comprises the 160 bp bovine Bsu family and is linked with bovine Alu-like sequences.  相似文献   

19.
20.
A systematic screening and analysis of repeated DNA sequences from a dog genomic library composed of small DNA inserts enabled us to characterize abundant canine repetitive DNA families. Four main families were identified: i) a group of highly repeated tRNA-derived short interspersed repetitive DNA elements (tRNA-SINEs); ii) another type of SINE-like element that was mainly found inserted into long interspersed repetitive elements (LINEs); iii) LINEs of the L1 type; and iv) satellite or satellite-like DNA. Surprisingly, no SINEs derived from 7SL RNA were found in the dog genome. These data should help in the analysis of canine DNA sequences and in the design of canine genome mapping reagents. Received: 4 November 1998 / Accepted: 2 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号