首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrolysis of phosphodiester bonds by metallonucleases is crucial to most aspects of nucleic acid processing. In recent years, studies of the classical restriction endonucleases have given way to the characterization of metallonucleases with widely divergent active site motifs. These developments fuel debates regarding the roles of metal ions in these enzymes. It is fortuitous that the current literature also includes the increased application of a variety of computational techniques to test the roles of metal ions in nucleic acid hydrolysis by these systems. This includes recent proposals and indirect evidence that these enzymes utilize metal ion movement in these reactions.  相似文献   

2.
Many fundamental cellular processes depend on enzymes that utilize chemical energy to catalyse unfavourable reactions. Certain classes of ATPases provide a particularly vivid example of the process of energy conversion, employing cycles of nucleotide turnover to move and/or rearrange biological polymers such as proteins and nucleic acids. Four well-characterized classes of ATP-dependent protein/nucleic acid translocases and remodelling factors are found in all three domains of life (bacteria, archaea and eukarya): additional strand catalytic 'E' (ASCE) P-loop NTPases, GHL proteins, actin-fold enzymes and chaperonins. These unrelated protein superfamilies have each evolved the ability to couple ATP binding and hydrolysis to the generation of motion and force along or within their substrates. The past several years have witnessed the emergence of a wealth of structural data that help explain how such molecular engines link nucleotide turnover to conformational change. In this review, we highlight several recent advances to illustrate some of the mechanisms by which each family of ATP-dependent motors facilitates the rearrangement and movement of proteins, protein complexes and nucleic acids.  相似文献   

3.
On helicases and other motor proteins   总被引:1,自引:0,他引:1  
Helicases are molecular machines that utilize energy derived from ATP hydrolysis to move along nucleic acids and to separate base-paired nucleotides. The movement of the helicase can also be described as a stationary helicase that pumps nucleic acid. Recent structural data for the hexameric E1 helicase of papillomavirus in complex with single-stranded DNA and MgADP has provided a detailed atomic and mechanistic picture of its ATP-driven DNA translocation. The structural and mechanistic features of this helicase are compared with the hexameric helicase prototypes T7gp4 and SV40 T-antigen. The ATP-binding site architectures of these proteins are structurally similar to the sites of other prototypical ATP-driven motors such as F1-ATPase, suggesting related roles for the individual site residues in the ATPase activity.  相似文献   

4.
Initial reaction rates for the hydrolysis of nucleic acids with micrococcal endonuclease (EC 3.1.31.1) insolubilized on Sepharose are strongly influenced by diffusional limitations. Although the absolute values are low, they can be increased substantially by changing particle and pore size of the support, or enzyme concentration in the insoluble derivative. As a result of steric and diffusional limitations, the course of the reaction and selectivity to hydrolysis products for the insoluble derivatives are different to those of the native enzyme; the former produces mainly large and small fragments but few of intermediate size. Because of these differences in course and selectivity of the reaction, diffusional limitations become less important when high initial reaction rates are not required.  相似文献   

5.
Helicases translocate along their nucleic acid substrates using the energy of ATP hydrolysis and by changing conformations of their nucleic acid-binding sites. Our goal is to characterize the conformational changes of hepatitis C virus (HCV) helicase at different stages of ATPase cycle and to determine how they lead to translocation. We have reported that ATP binding reduces HCV helicase affinity for nucleic acid. Now we identify the stage of the ATPase cycle responsible for translocation and unwinding. We show that a rapid directional movement occurs upon helicase binding to DNA in the absence of ATP, resulting in opening of several base pairs. We propose that HCV helicase translocates as a Brownian motor with a simple two-stroke cycle. The directional movement step is fueled by single-stranded DNA binding energy while ATP binding allows for a brief period of random movement that prepares the helicase for the next cycle.  相似文献   

6.
Biochemical reactions powered by ATP hydrolysis are fundamental for the movement of molecules and cellular structures. One such reaction is the encapsidation of the double-stranded DNA (dsDNA) genome of an icosahedrally symmetric virus into a preformed procapsid with the help of a genome-translocating NTPase. Such NTPases have been characterized in detail from both RNA and tailed DNA viruses. We present four crystal structures and the biochemical activity of a thermophilic NTPase, B204, from the nontailed, membrane-containing, hyperthermoacidophilic archaeal dsDNA virus Sulfolobus turreted icosahedral virus 2. These are the first structures of a genome-packaging NTPase from a nontailed, dsDNA virus with an archaeal host. The four structures highlight the catalytic cycle of B204, pinpointing the molecular movement between substrate-bound (open) and empty (closed) active sites. The protein is shown to bind both single-stranded and double-stranded nucleic acids and to have an optimum activity at 80°C and pH 4.5. The overall fold of B204 places it in the FtsK-HerA superfamily of P-loop ATPases, whose cellular and viral members have been suggested to share a DNA-translocating mechanism.  相似文献   

7.
Helicases use the energy from ATP hydrolysis to catalyze formation of single-stranded nucleic acids by unwinding double-stranded nucleic acids. The ATP-dependent reaction can be broken down into at least two steps: melting of the duplex and translocation of the enzyme along the nucleic acid lattice. Each step presents difficulties for study because clear end points for the reactions are not always available. For example, translocation involves the movement of the enzyme from one point along the lattice to a new position, with no net change in chemical structure of the nucleic acid. Hence, new assays have been developed in which the nucleic acid is modified to contain a "protein block" that impedes translocation of the enzyme. To prepare such protein blocks, biotin-streptavidin has been used due to the ease with which the biotin can be incorporated into nucleic acids by chemical synthesis. Several applications of oligonucleotides labeled with biotin-streptavidin for the study of helicase mechanisms are described.  相似文献   

8.
Plasmodesmata: composition,structure and trafficking   总被引:8,自引:0,他引:8  
Plasmodesmata are highly specialized gatable trans-wall channels that interconnect contiguous cells and function in direct cytoplasm-to-cytoplasm intercellular transport. Computer-enhanced digital imaging analysis of electron micrographs of plasmodesmata has provided new information on plasmodesmatal fine structure. It is now becoming clear that plasmodesmata are dynamic quasi-organelles whose conductivity can be regulated by environmental and developmental signals. New findings suggest that signalling mechanisms exist which allow the plasmodesmatal pore to dilate to allow macromolecular transport. Plant viruses spread from cell to cell via plasmodesmata. Two distinct movement mechanisms have been elucidated. One movement mechanism involves the movement of the complete virus particle along virus-induced tubular structures within a modified plasmodesma. Apparently two virus-coded movement proteins are involved. A second movement mechanism involves the movement of a non-virion form through existing plasmodesmata. In this mechanism, the viral movement protein causes a rapid dilation of existing plasmodesmata to facilitate protein and nucleic acid movement. Techniques for the isolation of plasmodesmata have been developed and information on plasmodesma-associated proteins is now becoming available. New evidence is reviewed which suggests that plasmodesmatal composition and regulation may differ in different cells and tissues.  相似文献   

9.
Plasmodesmata are cytoplasmic bridges in plants through which intercellular communication occurs. This involves the transport of ions, photoassimilates, growth hormones as well as protein‐nucleic acid complexes. Although these molecules are rather small (< 1 kDa) plant viruses succeed in using these intercellular highways to transport their genome. These viruses alter the plasmodesmata in some way to allow the transport of such large molecules. This review deals with how plant viruses manage this with the help of movement proteins and the cytoskeleton.  相似文献   

10.
Helicases mode of unwinding the nucleic acids and translocation along single stranded nucleic acids is still a subject of great curiosity. Based on the energy transduction and electrophilic interactions, we present a model to explain the mode of action of active helicases. This model considers that both strand separation as well as translocation is active processes fueled by NTP hydrolysis. The model proposes that the translocation appears to involve creeping of helicase over the ssNA lattice rather than inchworm movement.  相似文献   

11.
Helicases and nucleic acid translocases are motor proteins that have essential roles in nearly all aspects of nucleic acid metabolism, ranging from DNA replication to chromatin remodelling. Fuelled by the binding and hydrolysis of nucleoside triphosphates, helicases move along nucleic acid filaments and separate double-stranded DNA into their complementary single strands. Recent evidence indicates that the ability to simply translocate along single-stranded DNA is, in many cases, insufficient for helicase activity. For some of these enzymes, self assembly and/or interactions with accessory proteins seem to regulate their translocase and helicase activities.  相似文献   

12.
An in vitro real-time single turnover assay for the Escherichia coli Sec transport system was developed based on fluorescence dequenching. This assay corrects for the fluorescence quenching that occurs when fluorescent precursor proteins are transported into the lumen of inverted membrane vesicles. We found that 1) the kinetics were well fit by a single exponential, even when the ATP concentration was rate-limiting; 2) ATP hydrolysis occurred during most of the observable reaction period; and 3) longer precursor proteins transported more slowly than shorter precursor proteins. If protein transport through the SecYEG pore is the rate-limiting step of transport, which seems likely, these conclusions argue against a model in which precursor movement through the SecYEG translocon is mechanically driven by a series of rate-limiting, discrete translocation steps that result from conformational cycling of the SecA ATPase. Instead, we propose that precursor movement results predominantly from Brownian motion and that the SecA ATPase regulates pore accessibility.  相似文献   

13.
How do plant virus nucleic acids move through intercellular connections?   总被引:20,自引:0,他引:20  
In addition to their function in transport of water, ions, small metabolites, and growth factors in normal plant tissue, the plasmodesmata presumably serve as routes for cell-to-cell movement of plant viruses in infected tissue. Virus cell-to-cell spread through plasmodesmata is an active process mediated by specialized virus encoded movement proteins; however, the mechanism by which these proteins operate is not clear. We incorporate recent information on the biochemical properties of plant virus movement proteins and their interaction with plasmodesmata in a model for transport of nucleic acids through plasmodesmatal channels. We propose that only single stranded (ss) nucleic acids can be transported efficiently through plasmodesmata, and that movement proteins function as molecular chaperones for ss nucleic acids to form unfolded movement protein-ss nucleic acid complexes. These complexes are targeted to plasmodesmata. Plasmodesmatal permeability is then increased following interaction with movement protein and the entire movement complex or its nucleic acid component is translocated across the plasmodesmatal channel.  相似文献   

14.
15.
Two derivatives of pancreatic ribonuclease and endonuclease of Staphylococcus aureus, insolubilized on corn cob, have been used to reduce the percentage of nucleic acids in single cell protein (SCP) concentrates from yeasts. These derivatives are thermostable and active at 45 degrees C. At these temperatures the contamination by bacteria is negligible. The thermostability is remarkable, since the native nuclease is deactivated at above 39 degrees C. The hydrolysis of the nucleic acids in SCP is carried out first with the ribonuclease derivative followed by the endonuclease derivative. The catalytic activity of the insolubilized derivatives is similar to that of the native enzymes in the hydrolysis of RNA but not of DNA. The percentage of nucleic acids is reduced from 5-15 to 0.5%, with a loss of protein of 6%. These percentages are lower than those previously reported.  相似文献   

16.
The clathrin-coated vesicle proton-translocating complex is composed of a maximum of eight major polypeptides. Of these potential subunits, only the 17-kDa component, which is a proton pore, has been defined functionally (Sun, S.Z., Xie, X. S., and Stone, D. K. (1987) J. Biol. Chem. 262, 14790-14794). ATPase-and proton-pumping activities of the 200-fold purified proton-translocating complex are supported by Mg2+, whereas Ca2+ will only activate ATP hydrolysis. Like Mg2+-activated ATPase activity, Ca2+-supported ATP hydrolysis is inhibited by N-ethylmaleimide, NO3-, and an inhibitory antibody and is stimulated by Cl- and phosphatidylserine. Thus, Ca2+ prevents coupling of ATPase activity to vectoral proton movement, and Ca2+-activated ATPase activity is a partial reaction useful for analyzing the subunit structure required for ATP hydrolysis. The 530-kDa holoenzyme was dissociated with 3 M urea and subcomplexes, and isolated subunits were partially resolved by glycerol gradient centrifugation. No combination of these components yielded Mg2+-activated ATPase or proton pumping. Ca2+-activated ATP hydrolysis was not catalyzed by a subcomplex containing the 70- and 58-kDa subunits but was restored by recombination of the 70-, 58-, 40-, and 33-kDa polypeptides, indicating that these are subunits of the clathrin-coated vesicle proton pump which are necessary for ATP hydrolysis.  相似文献   

17.
18.
Bond PJ  Guy AT  Heron AJ  Bayley H  Khalid S 《Biochemistry》2011,50(18):3777-3783
Protein nanopores show great potential as low-cost detectors in DNA sequencing devices. To date, research has largely focused on the staphylococcal pore α-hemolysin (αHL). In the present study, we have developed simplified models of the wild-type αHL pore and various mutants in order to study the translocation dynamics of single-stranded DNA under the influence of an applied electric field. The model nanopores reflect the experimentally measured conductance values in planar lipid bilayers. We show that interactions between rings of cationic amino acids and DNA backbone phosphates result in metastable tethering of nucleic acid molecules within the pore, leading us to propose a "binding and sliding" mechanism for translocation. We also observe folding of DNA into nonlinear conformational intermediates during passage through the confined nanopore environment. Despite adopting nonlinear conformations, the DNA hexamer always exits the pore in the same orientation as it enters (3' to 5') in our simulations. The observations from our simulations help to rationalize experimentally determined trends in residual current and translocation efficiency for αHL and its mutants.  相似文献   

19.
Plant viruses encode movement proteins that are essential for infection of the host but are not required for viral replication or encapsidation. Squash leaf curl virus (SqLCV), a bipartite geminivirus with a single-stranded DNA genome, encodes two movement proteins, BR1 and BL1, that have been implicated in separate functions in viral movement. To further elucidate these functions, we have investigated the nucleic acid binding properties and cellular localization of BR1 and BL1. In this study, we showed that BR1 binds strongly to single-stranded nucleic acids, with a higher affinity for single-stranded DNA than RNA, and is localized to the nucleus of SqLCV-infected plant cells. In contrast, BL1 binds only weakly to single-stranded nucleic acids and not at all to double-stranded DNA. The nuclear localization of BR1 and the previously demonstrated plasma membrane localization of BL1 were also observed when these proteins were expressed from baculovirus vectors in Spodoptera frugiperda insect cells. The biochemical properties and cellular locations of BR1 and BL1 suggest a model for SqLCV movement whereby BR1 is involved in the shuttling of the genome in and/or out of the nucleus and BL1 acts at the plasma membrane/cell wall to facilitate viral movement across cell boundaries.  相似文献   

20.
Despite the significant progress in the identification of essential components of the nuclear transport machinery, some events of this process are still unclear. Particularly, functional information about the release of nuclear-exported macromolecules at the cytoplasmic side of the nuclear pore complex and their subsequent trans-cytoplasmic movement is lacking. Recently, we identified a cytoplasmic GTPase, designated NIG (NSP-interacting GTPase), which may play a relevant role in these processes. NIG interacts in vivo with the geminivirus NSP and promotes the translocation of the viral protein from the nucleus to the cytoplasm where it is redirected to the cell surface to interact with the viral movement protein, MP. Here we position the NIG function into the mechanistic model for the intracellular trafficking of viral DNA and discuss the putative role of NIG in general cellular nucleocytoplasmic transport of nucleic acid-protein complexes.Key words: geminivirus, NIG, NSP, nucleocytoplasmic trafficking, transport activity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号