首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Clinically, amniotic membrane (AM) suppresses inflammation, scarring, and angiogenesis. AM contains abundant hyaluronan (HA) but its function in exerting these therapeutic actions remains unclear. Herein, AM was extracted sequentially with buffers A, B, and C, or separately by phosphate-buffered saline (PBS) alone. Agarose gel electrophoresis showed that high molecular weight (HMW) HA (an average of ∼3000 kDa) was predominantly extracted in isotonic Extract A (70.1 ± 6.0%) and PBS (37.7 ± 3.2%). Western blot analysis of these extracts with hyaluronidase digestion or NaOH treatment revealed that HMW HA was covalently linked with the heavy chains (HCs) of inter-α-inhibitor (IαI) via a NaOH-sensitive bond, likely transferred by the tumor necrosis factor-α stimulated gene-6 protein (TSG-6). This HC·HA complex (nHC·HA) could be purified from Extract PBS by two rounds of CsCl/guanidine HCl ultracentrifugation as well as in vitro reconstituted (rcHC·HA) by mixing HMW HA, serum IαI, and recombinant TSG-6. Consistent with previous reports, Extract PBS suppressed transforming growth factor-β1 promoter activation in corneal fibroblasts and induced mac ro phage apo pto sis. However, these effects were abolished by hyaluronidase digestion or heat treatment. More importantly, the effects were retained in the nHC·HA or rcHC·HA. These data collectively suggest that the HC·HA complex is the active component in AM responsible in part for clinically observed anti-inflammatory and anti-scarring actions.Hyaluronan (HA)4 is widely distributed in extracellular matrices, tissues, body fluids, and even in intracellular compartments (reviewed in Refs. 1 and 2). The molecular weight of HA ranges from 200 to 10,000 kDa depending on the source (3), but can also exist as smaller fragments and oligosaccharides under certain physiological or pathological conditions (1). Investigations over the last 15 years have suggested that low Mr HA can induce the gene expression of proinflammatory mediators and proangiogenesis, whereas high molecular weight (HMW) HA inhibits these processes (47).Several proteins have been shown to bind to HA (8) such as aggrecan (9), cartilage link protein (10), versican (11), CD44 (12, 13), inter-α-inhibitor (IαI) (14, 15), and tumor necrosis factor-α stimulated gene-6 protein (TSG-6) (16, 17). IαI consists of two heavy chains (HCs) (HC1 and HC2), both of which are linked through ester bonds to a chondroitin sulfate chain that is attached to the light chain, i.e. bikunin. Among all HA-binding proteins, only the HCs of IαI have been clearly demonstrated to be covalently coupled to HA (14, 18). However, TSG-6 has also been reported to form stable, possibly covalent, complexes with HA, either alone (19, 20) or when associated with HC (21).The formation of covalent bonds between HCs and HA is mediated by TSG-6 (2224) where its expression is often induced by inflammatory mediators such as tumor necrosis factor-α and interleukin-1 (25, 26). TSG-6 is also expressed in inflammatory-like processes, such as ovulation (21, 27, 28) and cervical ripening (29). TSG-6 interacts with both HA (17) and IαI (21, 24, 3033), and is essential for covalently transferring HCs on to HA (2224). The TSG-6-mediated formation of the HC·HA complex has been demonstrated to play a crucial role in female fertility in mice. The HC·HA complex is an integral part of an expanded extracellular “cumulus” matrix around the oocyte, which plays a critical role in successful ovulation and fertilization in vivo (22, 34). HC·HA complexes have also been found at sites of inflammation (3538) where its pro- or anti-inflammatory role remain arguable (39, 40).Immunostaining reveals abundant HA in the avascular stromal matrix of the AM (41, 42).5 In ophthalmology, cryopreserved AM has been widely used as a surgical graft for ocular surface reconstruction and exerts clinically observable actions to promote epithelial wound healing and to suppress inflammation, scarring, and angiogenesis (for reviews see Refs. 4345). However, it is not clear whether HA in AM forms HC·HA complex, and if so whether such an HC·HA complex exerts any of the above therapeutic actions. To address these questions, we extracted AM with buffers of increasing salt concentration. Because HMW HA was found to form the HC·HA complex and was mainly extractable by isotonic solutions, we further purified it from the isotonic AM extract and reconstituted it in vitro from three defined components, i.e. HMW HA, serum IαI, and recombinant TSG-6. Our results showed that the HC·HA complex is an active component in AM responsible for the suppression of TGF-β1 promoter activity, linkable to the scarring process noted before by AM (4648) and by the AM soluble extract (49), as well as for the promotion of macrophage death, linkable to the inflammatory process noted by AM (50) and the AM soluble extract (51).  相似文献   

9.
10.
11.
12.
Inflammasomes have been extensively characterized in monocytes and macrophages, but not in epithelial cells, which are the preferred host cells for many pathogens. Here we show that cervical epithelial cells express a functional inflammasome. Infection of the cells by Chlamydia trachomatis leads to activation of caspase-1, through a process requiring the NOD-like receptor family member NLRP3 and the inflammasome adaptor protein ASC. Secretion of newly synthesized virulence proteins from the chlamydial vacuole through a type III secretion apparatus results in efflux of K+ through glibenclamide-sensitive K+ channels, which in turn stimulates production of reactive oxygen species. Elevated levels of reactive oxygen species are responsible for NLRP3-dependent caspase-1 activation in the infected cells. In monocytes and macrophages, caspase-1 is involved in processing and secretion of pro-inflammatory cytokines such as interleukin-1β. However, in epithelial cells, which are not known to secrete large quantities of interleukin-1β, caspase-1 has been shown previously to enhance lipid metabolism. Here we show that, in cervical epithelial cells, caspase-1 activation is required for optimal growth of the intracellular chlamydiae.Chlamydia trachomatis is the most common cause of bacterial sexually transmitted disease in the United States, and it is the leading cause of preventable blindness in the world (15). Untreated, C. trachomatis infection in women can cause pelvic inflammatory disease, which can lead to infertility and ectopic pregnancy because of scarring of the ovaries and the Fallopian tubes (6). Infection by the lymphogranuloma venereum (LGV)2 strain of C. trachomatis, which has become more common in North America and Europe (7, 8), is characterized by swelling and inflammation of the lymph nodes in the groin (9).Chlamydiae are intracellular pathogens that preferentially infect epithelial mucosa and have a biphasic infection cycle (10). A metabolically inactive form, the elementary body, infects the epithelial host cells through entry vesicles that avoid fusion with host cell lysosomes and develop into a membrane-bound inclusion (1113). Despite their intravacuolar localization, chlamydiae are still able to acquire nutrients from the host cell and interact with host-cell signaling pathways (1323). Within a few hours, the elementary bodies differentiate into larger, metabolically active reticulate bodies, which proliferate but are noninfectious. Depending on the strain of C. trachomatis, the reticulate bodies transform back into elementary bodies after 1–3 days and are released into the extracellular medium to infect other cells (11, 24, 25). Chlamydial species possess a type III secretion (T3S) system that secretes bacterial virulence factors into host cell cytosol and may control interactions between the inclusion and host-cell compartments (26).Long before the adaptive immune response is activated, infected epithelial cells produce proinflammatory cytokines and chemokines, including interleukin (IL)-6, IL-8, and granulocyte-macrophage colony-stimulating factor (27), which recruit neutrophils to the site of infection and activate other immune effector cells. However, in many cases the immune system fails to clear the infection, and the chronic release of cytokines becomes a major contributor to the scarring and damage associated with the infection (2830).The innate immune response during C. trachomatis infection is initiated by chlamydial pathogen-associated molecular patterns, including lipopolysaccharides, which bind to pattern recognition receptors such as Toll-like receptors and cytosolic NOD-like receptors (NLRs), ultimately promoting pro-inflammatory cytokine gene expression and secretion of the cytokine proteins (3137). However, secretion of the key pro-inflammatory cytokine IL-1β is tightly regulated (38). First, pro-IL-1β is produced following activation of pattern recognition receptor, and the precursor is then cleaved into the mature form by the pro-inflammatory cysteine protease, caspase-1 (also known as interleukin-1 converting enzyme or ICE). The mechanism by which caspase-1 is activated in response to infection or tissue damage was found to be modulated by a macromolecular protein complex termed the “inflammasome,” which consists of an NLR family member, an adaptor protein (apoptosis-associated speck-like protein containing a caspase activation recruitment domain or ASC), and an inactive caspase-1 precursor (pro-caspase-1) (39, 40). Previous studies demonstrated that IL-1β is produced in response to chlamydial infection in dendritic cells, macrophages, and monocytes (4144). Moreover, C. trachomatis or Chlamydia caviae infection activates caspase-1 in epithelial cells or monocytes (43, 45, 46). However, whether caspase-1 activation during chlamydial infection requires the formation of an inflammasome remains unclear.Previous studies have shown that different pathogens can cause inflammasome-mediated caspase-1 activation in macrophages and monocytes (47). However, epithelial cells lining mucosal surfaces are not only the preferred target for chlamydial infection and other intracellular pathogens but also play an important role in early host immune response to infection by secreting proinflammatory cytokines and chemokines (27). Although epithelial cells are not known to secrete large amounts of IL-1β, inflammasome-dependent caspase-1 activation in epithelial cells is known to contribute to lipid metabolism and membrane regeneration in epithelial cells damaged by the membrane-disrupting toxin, aerolysin (48). As lipids are sorted from the Golgi apparatus to the chlamydial inclusion (13, 15, 49), we therefore investigated whether C. trachomatis induces caspase-1 activation in epithelial cells via the assembly of an inflammasome. We demonstrated that C. trachomatis-induced caspase-1 activation is mediated by an inflammasome containing the NLR member, NLRP3. Several studies have demonstrated the involvement of T3S apparatus in inflammasome-mediated caspase-1 activation by different pathogens in macrophages and monocytes (5056). Therefore, we further investigated the mechanism by which C. trachomatis triggers the formation of the NLRP3 inflammasome. Our results showed that metabolically active chlamydiae, relying on their T3S apparatus, cause K+ efflux, which in turn leads to formation of reactive oxygen species (ROS) and ultimately NLRP3-dependent caspase-1 activation. Epithelial cells do not typically secrete large amounts of IL-1β; instead, caspase-1 activation in cervical epithelial cells contributes to development of the chlamydial inclusion.  相似文献   

13.
Paneth cells are a secretory epithelial lineage that release dense core granules rich in host defense peptides and proteins from the base of small intestinal crypts. Enteric α-defensins, termed cryptdins (Crps) in mice, are highly abundant in Paneth cell secretions and inherently resistant to proteolysis. Accordingly, we tested the hypothesis that enteric α-defensins of Paneth cell origin persist in a functional state in the mouse large bowel lumen. To test this idea, putative Crps purified from mouse distal colonic lumen were characterized biochemically and assayed in vitro for bactericidal peptide activities. The peptides comigrated with cryptdin control peptides in acid-urea-PAGE and SDS-PAGE, providing identification as putative Crps. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry experiments showed that the molecular masses of the putative α-defensins matched those of the six most abundant known Crps, as well as N-terminally truncated forms of each, and that the peptides contain six Cys residues, consistent with identities as α-defensins. N-terminal sequencing definitively revealed peptides with N termini corresponding to full-length, (des-Leu)-truncated, and (des-Leu-Arg)-truncated N termini of Crps 1–4 and 6. Crps from mouse large bowel lumen were bactericidal in the low micromolar range. Thus, Paneth cell α-defensins secreted into the small intestinal lumen persist as intact and functional forms throughout the intestinal tract, suggesting that the peptides may mediate enteric innate immunity in the colonic lumen, far from their upstream point of secretion in small intestinal crypts.Antimicrobial peptides (AMPs)2 are released by epithelial cells onto mucosal surfaces as effectors of innate immunity (15). In mammals, most AMPs derive from two major families, the cathelicidins and defensins (6). The defensins comprise the α-, β-, and θ-defensin subfamilies, which are defined by the presence of six cysteine residues paired in characteristic tridisulfide arrays (7). α-Defensins are highly abundant in two primary cell lineages: phagocytic leukocytes, primarily neutrophils, of myeloid origin and Paneth cells, which are secretory epithelial cells located at the base of the crypts of Lieberkühn in the small intestine (810). Neutrophil α-defensins are stored in azurophilic granules and contribute to non-oxidative microbial cell killing in phagolysosomes (11, 12), except in mice whose neutrophils lack defensins (13). In the small bowel, α-defensins and other host defense proteins (1418) are released apically as components of Paneth cell secretory granules in response to cholinergic stimulation and after exposure to bacterial antigens (19). Therefore, the release of Paneth cell products into the crypt lumen is inferred to protect mitotically active crypt cells from colonization by potential pathogens and confer protection against enteric infection (7, 20, 21).Under normal, homeostatic conditions, Paneth cells are not found outside the small bowel, although they may appear ectopically in response to local inflammation throughout the gastrointestinal tract (22, 23). Paneth cell numbers increase progressively throughout the small intestine, occurring at highest numbers in the distal ileum (24). Mouse Paneth cells express numerous α-defensin isoforms, termed cryptdins (Crps) (25), that have broad spectrum antimicrobial activities (6, 26). Collectively, α-defensins constitute approximately seventy percent of the bactericidal peptide activity in mouse Paneth cell secretions (19), selectively killing bacteria by membrane-disruptive mechanisms (2730). The role of Paneth cell α-defensins in gastrointestinal mucosal immunity is evident from studies of mice transgenic for human enteric α-defensin-5, HD-5, which are immune to infection by orally administered Salmonella enterica sv. typhimurium (S. typhimurium) (31).The biosynthesis of mature, bactericidal α-defensins from their inactive precursors requires activation by lineage-specific proteolytic convertases. In mouse Paneth cells, inactive ∼8.4-kDa Crp precursors are processed intracellularly into microbicidal ∼4-kDa Crps by specific cleavage events mediated by matrix metalloproteinase-7 (MMP-7) (32, 33). MMP-7 null mice exhibit increased susceptibility to systemic S. typhimurium infection and decreased clearance of orally administered non-invasive Escherichia coli (19, 32). Although the α-defensin proregions are sensitive to proteolysis, the mature, disulfide-stabilized peptides resist digestion by their converting enzymes in vitro, whether the convertase is MMP-7 (32), trypsin (34), or neutrophil serine proteinases (35). Because α-defensins resist proteolysis in vitro, we hypothesized that Paneth cell α-defensins resist degradation and remain in a functional state in the large bowel, a complex, hostile environment containing varied proteases of both host and microbial origin.Here, we report on the isolation and characterization of a population of enteric α-defensins from the mouse colonic lumen. Full-length and N-terminally truncated Paneth cell α-defensins were identified and are abundant in the distal large bowel lumen.  相似文献   

14.
The budding yeast formins, Bnr1 and Bni1, behave very differently with respect to their interactions with muscle actin. However, the mechanisms underlying these differences are unclear, and these formins do not interact with muscle actin in vivo. We use yeast wild type and mutant actins to further assess these differences between Bnr1 and Bni1. Low ionic strength G-buffer does not promote actin polymerization. However, Bnr1, but not Bni1, causes the polymerization of pyrene-labeled Mg-G-actin in G-buffer into single filaments based on fluorometric and EM observations. Polymerization by Bnr1 does not occur with Ca-G-actin. By cosedimentation, maximum filament formation occurs at a Bnr1:actin ratio of 1:2. The interaction of Bnr1 with pyrene-labeled S265C Mg-actin yields a pyrene excimer peak, from the cross-strand interaction of pyrene probes, which only occurs in the context of F-actin. In F-buffer, Bnr1 promotes much faster yeast actin polymerization than Bni1. It also bundles the F-actin in contrast to the low ionic strength situation where only single filaments form. Thus, the differences previously observed with muscle actin are not actin isoform-specific. The binding of both formins to F-actin saturate at an equimolar ratio, but only about 30% of each formin cosediments with F-actin. Finally, addition of Bnr1 but not Bni1 to pyrene-labeled wild type and S265C Mg-F actins enhanced the pyrene- and pyrene-excimer fluorescence, respectively, suggesting Bnr1 also alters F-actin structure. These differences may facilitate the ability of Bnr1 to form the actin cables needed for polarized delivery of nutrients and organelles to the growing yeast bud.Bni1 and Bnr1 are the two formin isoforms expressed in Saccharomyces cerevisiae (1, 2). These proteins, as other isoforms in the formin family, are large multidomain proteins (3, 4). Several regulatory domains, including one for binding the G-protein rho, are located at the N-terminal half of the protein (47). FH1, FH2, and Bud6 binding domains are located in the C-terminal half of the protein (8). The formin homology 1 (FH1)2 domain contains several sequential poly-l-proline motifs, and it interacts with the profilin/actin complex to recruit actin monomers and regulate the insertion of actin monomers at the barbed end of actin (911). The fomin homology domain 2 (FH2) forms a donut-shaped homodimer, which wraps around actin dimers at the barbed end of actin filaments (12, 13). One important function of formin is to facilitate actin polymerization by stabilizing actin dimers or trimers under polymerization conditions and then to processively associate with the barbed end of the elongating filament to control actin filament elongation kinetics (1318).A major unsolved protein in the study of formins is the elucidation of the individual functions of different isoforms and their regulation. In vivo, these two budding yeast formins have distinct cellular locations and dynamics (1, 2, 19, 20). Bni1 concentrates at the budding site before the daughter cell buds from the mother cell, moves along with the tip of the daughter cell, and then travels back to the neck between daughter and mother cells at the end of segregation. Bnr1 localizes only at the neck of the budding cell in a very short period of time after bud emergence. Although a key cellular function of these two formins in yeast is to promote actin cable formation (8, 18), the roles of the individual formins in different cellular process is unclear because deleting either individual formin gene has limited impact on cell growth and deleting both genes together is lethal (21).Although each of the two formins can nucleate actin filament formation in vitro, the manner in which they affect polymerization is distinctly isoform-specific. Most of this mechanistic work in vitro has used formin fragments containing the FH1 and FH2 domains. Bni1 alone processively caps the barbed end of actin filaments partially inhibiting polymerization at this end (14, 16, 18). The profilin-actin complex, recruited to the actin barbed end through its binding to Bni1 FH1 domain, possibly raises the local actin concentration and appears to allow this inhibition to be overcome, thereby, accelerating barbed end polymerization. It has also been shown that this complex modifies the kinetics of actin dynamics at the barbed end (9, 11, 18, 22). Moreover, Bni1 participation leads only to the formation of single filaments (8). In comparison, the Bnr1 FH1-FH2 domain facilitates actin polymerization much more efficiently than does Bni1. Moseley and Goode (8) showed Bnr1 accelerates actin polymerization up to 10 times better than does Bni and produces actin filament bundles when the Bnr1/actin molar ratio is above 1:2. Finally, the regulation of Bni1 and Bnr1 by formin binding is different. For example, Bud 6/Aip3, a yeast cell polarity factor, binds to Bni1, but not Bnr1, and also stimulates its activity in vitro.For their studies, Moseley and Goode (8) utilized mammalian skeletal muscle actin instead of the S. cerevisiae actin with which the yeast formins are designed to function. It is entirely possible that the differences observed with the two formins are influenced quantitatively or qualitatively by the nature of the actin used in the study. This possibility must be seriously considered because although yeast and muscle actins are 87% identical in sequence, they display marked differences in their polymerization behavior (23). Yeast actin nucleates filaments better than muscle actin (24, 25). It appears to form shorter and more flexible filaments than does muscle actin (26, 27). Finally, the disposition of the Pi released during the hydrolysis of ATP that occurs during polymerization is different. Yeast actin releases its Pi concomitant with hydrolysis of the bound ATP whereas muscle actin retains the Pi for a significant amount of time following nucleotide hydrolysis (28, 29). This difference is significant because ADP-Pi F-actin has been shown to be more stable than ADP F-actin (30). Another example of this isoform dependence is the interaction of yeast Arp2/3 with yeast versus muscle actins (31). Yeast Arp2/3 complex accelerates polymerization of muscle actin only in the presence of a nucleation protein factor such as WASP. However, with yeast actin, no such auxiliary protein is required. In light of these actin behavioral differences, to better understand the functional differences of these two formins in vivo, we have studied the behavior of Bni 1 and Bnr 1 with WT and mutant yeast actins, and we have also explored the molecular basis underlying the Bnr 1-induced formation of actin nuclei from G-actin.  相似文献   

15.
16.
17.
18.
19.
The genomic plasticity of Candida albicans, a commensal and common opportunistic fungal pathogen, continues to reveal unexpected surprises. Once thought to be asexual, we now know that the organism can generate genetic diversity through several mechanisms, including mating between cells of the opposite or of the same mating type and by a parasexual reduction in chromosome number that can be accompanied by recombination events (2, 12, 14, 53, 77, 115). In addition, dramatic genome changes can appear quite rapidly in mitotic cells propagated in vitro as well as in vivo. The detection of aneuploidy in other fungal pathogens isolated directly from patients (145) and from environmental samples (71) suggests that variations in chromosome organization and copy number are a common mechanism used by pathogenic fungi to rapidly generate diversity in response to stressful growth conditions, including, but not limited to, antifungal drug exposure. Since cancer cells often become polyploid and/or aneuploid, some of the lessons learned from studies of genome plasticity in C. albicans may provide important insights into how these processes occur in higher-eukaryotic cells exposed to stresses such as anticancer drugs.The purpose of this review is to describe the tools used to detect genome changes, to highlight recent advances in our understanding of large-scale chromosome changes that arise in Candida albicans, and to discuss the role of specific stresses in eliciting these genome changes. The types of genomic diversity that have been characterized suggest that C. albicans can undergo extreme genomic changes in order to survive stresses in the human host. We propose that C. albicans and other pathogens may have evolved mechanisms not only to tolerate but also to generate large-scale genetic variation as a means of adaptation.C. albicans is a polymorphic yeast with a 16-Mb (haploid) genome organized in 8 diploid chromosomes (140, 154, 203). The C. albicans genome displays a very high degree of plasticity. This plasticity includes the types of genomic changes frequently observed with cancer cells, including gross chromosomal rearrangements, aneuploidy, and loss of heterozygosity (reviewed in references 100, 117, and 157). Similar to somatic cancer cells, C. albicans reproduces primarily through asexual clonal division (65, 84). Nonetheless, it has retained much of the machinery needed for mating and meiosis (189), yet meiosis has never been observed (13, 120).C. albicans has two mating-type-like (MTL) alleles, MTLa and MTLα (76). The MTL locus is on the left arm of chromosome 5 (Chr5), approximately 80 kbp from the centromere. Most C. albicans isolates are heterozygous for the MTL locus, but approximately 3 to 10% of clinical isolates are naturally homozygous at MTL (104, 108). Mating can occur between strains carrying the opposite MTL locus, and most strains that were found to be naturally MTL homozygous are mating competent (104, 108). MTL-homozygous strains were also constructed from MTL-heterozygous strains by deletion of either the MTLa or MTLα locus (77) or by selection for Chr5 loss on sorbose (87, 115).Mating between these diploid strains of opposite mating type can occur both in vitro (115) and in vivo (77, 97). The products are tetraploid and do not undergo a conventional meiotic reduction in ploidy (12, 120). Rather, they undergo random loss of multiple chromosomes, a process termed “concerted chromosome loss,” until they reach a near-diploid genome content (2, 12, 53, 85). A subset of these cells also undergoes multiple gene conversion events reminiscent of meiotic recombination, and most remain trisomic for one to several chromosomes (53). While mating and concerted chromosome loss have been induced in the laboratory, the role of the parasexual cycle during the host-pathogen interaction and in the response to stresses, such as exposure to antifungal drugs, remains unclear. The prevailing model is that adaptive mutations (such as those that occur with the acquisition of drug resistance) evolve through somatic events, including point mutations, recombination, gene conversion, loss of heterozygosity, and/or aneuploidy (13).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号