首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The LSTRA murine thymoma cell line contains an elevated level of tyrosine protein kinase activity. When a microsomal preparation from these cells is incubated in vitro with ATP, the principal tyrosine protein kinase substrate is a 56,000-dalton protein, p56. We have found that an activity phosphorylating p56 on tyrosine can also be detected at low levels in microsomes from most, but not all, T lymphoma cell lines and from normal thymic tissue. Only 1 of 30 other lymphoma cell lines was found to contain an elevated level of such a tyrosine protein kinase. An activity that phosphorylated p56 in vitro was not detectable in the cells of other hematopoietic lineages. Anti-peptide antibodies reactive with the site of in vitro tyrosine phosphorylation of p56 allowed us to determine that the apparent abundance of the p56 polypeptide parallels closely the level of the tyrosine protein kinase activity in the cell lines examined. This suggests that p56 is the protein kinase responsible for the elevated tyrosine protein kinase activity in LSTRA cells and that the phosphorylation of p56 observed in vitro results from autophosphorylation. Two-dimensional tryptic peptide mapping revealed that p56 is distinct from the proteins encoded by the cellular genes which are the progenitors of retroviral tyrosine protein kinases, src, yes, fgr, abl, fes, and ros. Additionally, none of these proto-oncogenes was found to be transcribed at elevated levels in LSTRA or Thy19 cells. Like the catalytic subunit of the cyclic AMP-dependent protein kinase, the cellular and viral forms of p60src, and the protein phosphatase calcineurin B, p56 contains covalently bound fatty acid.  相似文献   

2.
Vesicular stomatitis virus was disrupted by a combination of freezing and thawing, osmotic shock, and sonic treatment. Subviral components were separated by isopycnic centrifugation. The low-density, lipid-rich fractions were pooled and shown to contain primarily viral glycoprotein. Further purification of this material resulted in the isolation of a preparation of vesicles which contained only the G protein and the same phospholipids as in the intact virions and exhibited spikelike structures similar to those on intact vesicular stomatitis virions. We conclude that we have isolated fragments of native vesicular stomatitis virus envelopes.  相似文献   

3.
R E Thom  J E Casnellie 《FEBS letters》1987,222(1):104-108
The LSTRA cell line has been shown to have an exceptionally high level of a tyrosine protein kinase (pp56lck). We now report that LSTRA cells also have a much higher level of proteins phosphorylated on tyrosine residues in comparison to several other cell lines with normal levels of pp56lck. The level of phosphotyrosine-containing proteins in LSTRA cells was comparable to that seen in K562 cells, a cell line known to have a constitutively active tyrosine protein kinase. These results provide evidence that LSTRA cells have an elevated level of in vivo tyrosine protein kinase activity, probably due to the overexpression and activation of pp56lck.  相似文献   

4.
5.
High levels of tyrosine kinase activity have been detected in the murine lymphoma LSTRA (p56). The functional domains of this kinase have been studied by the use of antibodies generated against peptides from the amino terminal region and from the tyrosine autophosphorylation site. The amino terminal antibody had higher affinity for the p56 than the antibody directed against the phosphotyrosine site. However, the phosphorylation of exogenous substrate by p56 was lower when the tyrosine kinase was immunocomplexed by the antibody against the amino terminal region than when the kinase was complexed by the phosphorylation site antibody. This suggests that in the N-terminal region exist structures which modulate the tyrosine kinase activity of the p56.  相似文献   

6.
Borna disease virus (BDV) surface glycoprotein (GP) (p56) has a predicted molecular mass of 56 kDa. Due to extensive posttranslational glycosylation the protein migrates as a polypeptide of 84 kDa (gp84). The processing of gp84 by the cellular protease furin generates gp43, which corresponds to the C-terminal part of gp84. Both gp84 and gp43 have been implicated in viral entry involving receptor-mediated endocytosis and pH-dependent fusion. We have investigated the domains of BDV p56 involved in virus entry. For this, we used a pseudotype approach based on a recently developed recombinant vesicular stomatitis virus (VSV) in which the gene for green fluorescent protein was substituted for the VSV G protein gene (VSV Delta G*). Complementation of VSV Delta G* with BDV p56 resulted in infectious VSV Delta G* pseudotypes that contained both BDV gp84 and gp43. BDV-VSV chimeric GPs that contained the N-terminal 244 amino acids of BDV p56 and amino acids 421 to 511 of VSV G protein were efficiently incorporated into VSV Delta G* particles, and the resulting pseudotype virions were neutralized by BDV-specific antiserum. These findings indicate that the N-terminal part of BDV p56 is sufficient for receptor recognition and virus entry.  相似文献   

7.
p56lck is a src related lymphocyte specific tyrosine protein kinase which undergoes specific changes during T-cell activation, particularly the appearance of slow migrating forms. To analyze these forms, LSTRA cells were treated with vanadate. This resulted in increased phosphorylation of p56lck with the appearance of slow migrating forms. Renaturation of the p56lck bands after gel migration showed that vanadate mostly increased the activity of the lower band of p56lck. The upper bands had a reduced specific activity. In addition, the upper bands from vanadate treated cells displayed additional phosphorylated sites.  相似文献   

8.
Several sarcoma-inducing viruses encode protein kinases that phosphorylate tyrosine residues. Such enzymatic activities can be detected within the detergent-insoluble matrix of transformed fibroblasts. We have analysed the protein kinase activities in two murine lymphoma cell lines ( MBL2 and LSTRA) induced by Moloney murine leukemia virus (Mo-MuLV). After incubation of the detergent-insoluble matrix of these cells with [gamma-32P]ATP, several alkali-resistant phosphoproteins, including a very heavily labelled 55 000 mol. wt. protein ( p55 ), have been detected in LSTRA, reflecting the activity of a protein kinase specific to this cell line. This protein kinase activity shares some of the distinctive properties of the protein kinases of transforming viruses, i.e., specificity for tyrosine residues, association with membranous and/or cytoskeletal structures, and inhibition by a synthetic peptide derived from the phosphorylation site of pp60src. In view of the absence of a transforming gene in MoMuLV , it is likely that the high level of protein kinase detected in the LSTRA cell line arises from the expression of a cellular gene.  相似文献   

9.
J J Pernelle  C Creuzet  J Loeb  G Gacon 《FEBS letters》1991,281(1-2):278-282
In particulate fractions from LSTRA lymphoma cells, tyrosine phosphorylation of the lymphoid specific tyrosine kinase p56lck is elicited by Zn2+ in the absence of other divalent cations. Zn2+ alone also induces autophosphorylation of immunoprecipitated p56lck. The effect of Zn2+ is dose dependent; it is detected at concentrations of Zn2+ as low as 5 microM and reaches a maximum at 100 microM Zn2+. Among other divalent cations tested, Mn2+, and Co2+ to a lesser extent, were also effective. Zn2+ also stimulated p56lck phosphorylation in the presence of Mg2+ ions at physiological concentration, whereas orthovanadate had no effect. These results suggest that Zn2+ activates the autophosphorylation of p56lck; this fact could be related with the stimulating effect of Zn2+ in the activation of T lymphocytes.  相似文献   

10.
The identity of the glycoprotein of vesicular stomatitis virus (VSV) as the spike protein has been confirmed by the removal of the spikes with a protease from Streptomyces griseus, leaving bullet-shaped particles bounded by a smooth membrane. This treatment removes the glycoprotein but does not affect the other virion proteins, apparently because they are protected from the enzyme by the lipids in the viral membrane. The proteins of phenotypically mixed, bullet-shaped virions produced by cells mixedly infected with VSV and the parainfluenza virus simian virus 5 (SV5) have been analyzed by polyacrylamide gel electrophoresis. These virions contain all the VSV proteins plus the two SV5 spike proteins, both of which are glycoproteins. The finding of the SV5 spike glycoproteins on virions with the typical morphology of VSV indicates that there is not a stringent requirement that only the VSV glycoprotein can be used to form the bullet-shaped virion. On the other hand, the SV5 nucleocapsid protein and the major non-spike protein of the SV5 envelope were not detected in the phenotypically mixed virions, and this suggests that a specific interaction between the VSV nucleocapsid and regions of the cell membrane which contain the nonglycosylated VSV envelope protein is necessary for assembly of the bullet-shaped virion.  相似文献   

11.
Onset of cell proliferation is associated with enhanced turnover of the polyamines putrescine, spermidine, and spermine, particularly evident in the massive increase in the activity of the rate-limiting enzyme in their production, ornithine decarboxylase (ODC). The physiological functions of these polyamines, however, have remained unclear. Here we report that treatment of LSTRA cells for 2-18 h with alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, decreased the amount of phosphotyrosine in several cellular substrates including the T cell protein tyrosine kinase p56lck. No reductions in the amount of p56lck, overall synthesis of protein and DNA, or cell viability were observed until much later. DFMO did not affect the catalytic activity of p56lck in vitro and the activity of p56lck immunoprecipitated from DFMO-treated cells was unaltered. Addition of putrescine, the reaction product of ODC, completely reversed the effect of DFMO on tyrosine phosphorylation. Finally, we provide evidence that polyamines reduce the activity of cellular protein tyrosine phosphatases toward endogenous substrates. Our results suggest that polyamines may influence the extent of tyrosine phosphorylation during cell proliferation and malignant transformation, perhaps by modulating the rate of dephosphorylation of specific target proteins.  相似文献   

12.
The LSTRA cell line contains an elevated level of a tyrosine protein kinase of apparent molecular weight of 56,000 (pp56Tcell). Analysis of the tryptic fragments of this protein labeled in vivo with 32P shows that it contains four sites of tyrosine phosphorylation and one site of serine phosphorylation. Two of the sites of in vivo tyrosine phosphorylation are also labeled in vitro when membranes are incubated with [gamma-32P]ATP. One of the sites that is labeled in vivo and in vitro (site 1) is identical in sequence with the major site of tyrosine phosphorylation in the transforming protein of the Rous sarcoma virus. Analysis of the sites of in vivo phosphorylation in pp56Tcell from LSTRA cells treated with 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) reveals that this agent induces at least four new sites of serine phosphorylation. Treatment with PMA also causes a selective reduction in the level of tyrosine phosphorylation in site 1. Thus PMA causes new sites of serine phosphorylation in pp56Tcell and reduces the amount of phosphate in one of the sites of tyrosine phosphorylation.  相似文献   

13.
The lck proto-oncogene encodes a lymphocyte-specific member of the src family of protein tyrosine kinases. Here we demonstrate that pp56lck is phosphorylated in vivo at a carboxy-terminal tyrosine residue (Tyr-505) analogous to Tyr-527 of pp60c-src. Substitution of phenylalanine for tyrosine at this position resulted in increased phosphorylation of a second tyrosine residue (Tyr-394) and was associated with an increase in apparent kinase activity. In addition, this single point mutation unmasked the oncogenic potential of pp56lck in NIH 3T3 cell transformation assays. Viewed in the context of similar results obtained with pp60c-src, it is likely that the enzymatic activity and transforming ability of all src-family protein tyrosine kinases can be regulated by carboxy-terminal tyrosine phosphorylation. We further demonstrate that overexpression of pp56lck in the murine T-cell lymphoma LSTRA as a result of a retroviral insertion event produces a kinase protein that despite wild-type primary structure is nevertheless hypophosphorylated at Tyr-505. Thus, control of normal growth in this lymphoid cell line may have been abrogated through acquisition of a posttranslationally activated version of pp56lck.  相似文献   

14.
Observations of the light-scattering properties of several enveloped viruses indicate that virions (vesicular stomatitis, SV5 and influenza), in common with other membrane systems, are osmotically active, responding to NaCl gradients by swelling in hypo-osmolar solutions and shrinking in hyperosmolar solutions. The permeability barrier responsible for this osmotic response in vesicular stomatitis virions was modified both by protease treatment to remove the viral glycoprotein and by treatment with the polyene antibiotic filipin, an agent known to interact with cholesterol in liposomes and membranes. Filipin altered the kinetic and equilibrium permeability behavior of virions but the extent of leakage of osmotic shocking agent was less than that in lecithin/cholesterol and lecithin/ergosterol liposomes and in ergosterol-containing ciliary membranes. Negative-staining electron microscopy revealed that filipin treatment caused structural changes in the viral membrane. Intact virions exhibited appreciably larger responses to osmotic change than did protease-treated virus particles. Thus, the osmotic barrier in intact vesicular stomatitis virions may not be exclusively lipid in nature.  相似文献   

15.
Observations of the light-scattering properties of several enveloped viruses indicate that virions (vesicular stomatitis, SV5 and influenza), in common with other membrane systems, are osmotically active, responding to NaCl gradients by swelling in hypo-osmolar solutions and shrinking in hyperosmolar solutions. The permeability barrier responsible for this osmotic response in vesicular stomatitis virions was modified both by protease treatment to remove the viral glycoprotein and by treatment with the polyene antibiotic filipin, an agent known to interact with cholesterol in liposomes and membranes. Filipin altered the kinetic and equilibrium permeability behavior of virions but the extent of leakage of osmotic shocking agent was less than that in lecithin/cholesterol and lecithin/ergosterol liposomes and in ergosterol-containing ciliary membranes. Negative-staining electron microscopy revealed that filipin treatment caused structural changes in the viral membrane. Intact virions exhibited appreciably larger responses to osmotic change than did protease-treated virus particles. Thus, the osmotic barrier in intact vesicular stomatitis virions may not be exclusively lipid in nature.  相似文献   

16.
All five major viral proteins were synthesized in chicken embryo cells infected with vesicular stomatitis virus temperature-sensitive (ts) mutants of complementation groups III and V and maintained at the nonpermissive temperature. The distribution of these proteins among cytoplasmic cellular fractions separated on discontinuous sucrose gradients was identical for wild-type and tsIII-infected cells. Strikingly different patterns were observed for the G protein in gradients from cells infected by tsV mutants; very little, if any, G protein was found in the lightest fraction. Pulse and chase experiments with wild-type, virus-infected cells showed that protein G moves from the heaviest to the lightest fraction before being incorporated into the virion. After shift down to the permissive temperature (30 C), G protein synthesized at 39.6 C in tsV-infected cells became associated with the lightest cellular fraction and later with the released virions. In contrast, M protein, synthesized at 39.6 C in tsIII-infected cells, was not incorporated into the virions after shift down. These data strongly suggest, first, that M protein is encoded by the vesicular stomatitis gene III, and second, that incorporation of G protein in the lightest cellular fraction is a necessary step of vesicular stomatitis maturation. This step is impaired by tsV mutations.  相似文献   

17.
The T cell lymphoma LSTRA contains an elevated level of a tyrosine protein kinase of molecular weight of 56,000 (pp56Tcell) that is present in normal T lymphocytes. Treatment of 32P-labeled LSTRA cells with the phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA), followed by immunoprecipitation of pp56Tcell, revealed that PMA causes complex changes in the state of phosphorylation of pp56Tcell, and the appearance of several new forms of pp56Tcell with higher apparent molecular weights on sodium dodecyl sulfate-polyacrylamide gels. The 32P-labeled pp56Tcell from untreated LSTRA cells contains phosphotyrosine and phosphoserine in a ratio of 2:1. After treatment of LSTRA cells with PMA, the form of pp56Tcell that runs with a molecular weight of 56,000 has approximately equal amounts of phosphotyrosine and phosphoserine, while the higher molecular weight forms of pp56Tcell seen after PMA have 3-4 times more phosphoserine than phosphotyrosine. The induction by PMA of higher molecular weight forms of pp56Tcell could also be demonstrated in preparations of normal human T lymphocytes. The changes in the state of phosphorylation of pp56Tcell after treatment of cells with PMA are consistent with the possibility that pp56Tcell is an in vivo substrate for protein kinase C and provide documentation for a linkage between a mitogenic agent and pp56Tcell.  相似文献   

18.
L2 cells infected with vesicular stomatitis virus under single-cycle conditions have been studied by scanning electron microscopy after preparation by the critical point drying technique. Three dimensional images of intact cells show bullet-shaped vesicular stomatitis virus virions budding singly and in radiating clusters both from the plasma membrane between cellular microvilli and from the sides of microvilli. Virus-induced cytopathic effects observed by scanning electron microscopy include intermeshing of microvilli, loss of filipodia which attach cells to the substrate, and rounding up and detachment of infected cells from the substrate.  相似文献   

19.
20.
Reaction of vesicular stomatitis virus with pardaxin, the hydrophobic toxin of the Red Sea flatfish, resulted in a profound morphological change of many virions and dissociation of their membrane and nucleocapsid into components readily separable by density gradient centrifugation. The basic matrix protein and acidic pardaxin segregated largely with the high density nucleocapsid. The dissociated virion membrane formed lipoprotein vesicles which retained glycoprotein spikes and a certain amount of N protein but no appreciable amounts of other nucleocapsid proteins and little if any RNA. Iodination of the tyrosine residue of the glycoprotein tail fragment provided supporting evidence that the COOH terminus of the glycoprotein extends beyond the inner layer of the membrane into the interior of the virion. These data indicate that pardaxin may serve as a probe for studying the organization of viral membranes, and, hopefully, other biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号