首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Trithorax-like (Trl) gene of Drosophila melanogaster encodes the multifunctional GAGA factor. The expression of Trl is known to depend on numerous factors, such as the organ, the tissue, the ontogenetic stage, and the ambient temperature. Apparently, this expression is controlled by a complex system of regulatory elements, which so far has been scarcely studied. Our preliminary results indicate that the second intron of the Trl gene bears functionally significant elements. To test this assumption, we generated 23 novel alleles of the gene via P-induced male recombination and analyzed them cytogenetically. Of these mutations, 13 (recessive lethals) are deletions, disrupting the coding gene region. Ten mutations (seven deletions and three duplications) remove parts of the second Trl intron only. Some of these mutant stocks exhibit lower viability at different temperatures. These results suggest that the second intron region harbors functionally significant elements. The deletion mapping results verified the localization of the Trl gene in the 70F1-2 region.  相似文献   

2.
3.
4.
The control of expression of the Drosophila melanogaster tropomyosin I (TmI) gene has been investigated by P-element transformation and rescue of the flightless and jumpless TmI mutant strain, Ifm(3)3. To localize cis-acting DNA sequences that control TmI gene expression, Ifm(3)3 flies were transformed with P-element plasmids containing various deletions and rearrangements of the TmI gene. The effects of these mutations on TmI gene expression were studied by analyzing both the extent of rescue of the Ifm(3)3 mutant phenotypes and determining TmI RNA levels in the transformed flies by primer extension analysis. The results of our analysis indicate that a region located within intron 1 of the gene is necessary and sufficient for directing muscle-specific TmI expression in the adult fly. This intron region has characteristics of a muscle regulatory enhancer element that can function in conjunction with the heterologous nonmuscle hsp70 promoter to promote rescue of the mutant phenotypes and to direct expression of an hsp70-Escherichia coli lacZ reporter gene in adult muscle. The enhancer can be subdivided further into two domains of activity based on primer extension analysis of TmI mRNA levels and on the rescue of mutant phenotypes. One of the intron domains is required for expression in the indirect flight muscle of the adult. The function of the second domain is unknown, but it could regulate the level of expression or be required for expression in other muscle.  相似文献   

5.
6.
7.
8.
9.
We and others previously showed that, in some lines of prion protein (PrP)-knockout mice, the downstream PrP-like protein (PrPLP/Dpl) was abnormally expressed in brains partly due to impaired cleavage/polyadenylation of the residual PrP promoter-driven pre-mRNA despite the presence of a poly(A) signal. In this study, we newly established an in vitro transient transfection system in which abnormal expression of PrPLP/Dpl can be visualized by expression of the green fluorescence protein, EGFP, in cultured cells. No EGFP was detected in cells transfected by a vector carrying a PrP genomic fragment including the region targeted in the knockout mice intact upstream of the PrPLP/Dpl gene. In contrast, deletion of the targeted region from the vector caused expression of EGFP. By employing this system with other vectors carrying various deletions or point mutations in the targeted region, we identified that disruption of the splicing elements in the PrP terminal intron caused the expression of EGFP. Recent lines of evidence indicate that terminal intron splicing and cleavage/polyadenylation of pre-mRNA are functionally linked to each other. Taken together, our newly established system shows that the abnormal expression of PrPLP/Dpl in PrP-knockout mice caused by the impaired cleavage/polyadenylation of the PrP promoter-driven pre-mRNA is due to the functional dissociation between the pre-mRNA machineries, in particular those of cleavage/polyadenylation and splicing. Our newly established in vitro system, in which the functional dissociation between the pre-mRNA machineries can be visualized by EGFP green fluorescence, may be useful for studies of the functional connection of pre-mRNA machineries.  相似文献   

10.
The RHD3 (ROOT HAIR DEFECTIVE3) gene encodes a putative GTP-binding protein required for appropriate cell enlargement in Arabidopsis. To obtain insight into the mechanisms of RHD3 regulation, we conducted a molecular genetic dissection of RHD3 gene expression and function. Gene fusion and complementation studies show that the RHD3 gene is highly expressed throughout Arabidopsis development and is controlled by two major regulatory regions. One regulatory region is located between -1,500 and -600 bp upstream of the RHD3 gene and is required for vascular tissue expression. The other region is intragenically located and includes the 558-bp first intron, which is responsible for high-level expression of RHD3 throughout the plant. The presence and location of this intron is essential for gene function because constructs lacking this intron or constructs with the intron in an abnormal position are unable to functionally complement the rhd3 mutations. We also analyzed the role of other RHD genes and the plant hormones auxin and ethylene in RHD3 regulation, and we determined that these act downstream or independently from the RHD3 pathway. This study shows that multiple levels of regulation are employed to ensure the appropriate expression of RHD3 throughout Arabidopsis development.  相似文献   

11.
The structure of the 3' one-third of the dystrophin gene has not previously been established. We have used vectorette PCR on a yeast artificial chromosome containing part of the human dystrophin gene to determine that there are 20 exons in this region and to characterize adjacent intron sequences of each one. Combined with previous information on the remainder of the gene, this study shows that the coding sequence is distributed between 79 exons. We have used PCR between exons to measure the distances that separate the more closely clustered exons. Vectorette PCR products were used as probes on Southern blots to assign all the 3' exons to genomic HindIII fragments that are commonly detected in the analysis of dystrophin gene deletions. The results will be useful for determining the effect of genomic deletions on the translational reading frame, for setting up genomic PCR assays to confirm point mutations, for analyzing splice site mutations, and for investigating potential cis-acting elements involved in tissue-specific alternative splicing. Vectorette PCR using primers derived from cDNA sequence represents an efficient and widely applicable method for establishing gene structure and obtaining intron sequence flanking exons, starting from a genomic clone and a cDNA sequence.  相似文献   

12.
Short interspersed elements, such as Alu elements, have propagated to more than one million copies in the human genome. They affect the genome in several ways, caused by retrotransposition, recombination between elements, gene conversion, and alterations in gene expression. These events, including novel insertions into active genes, have been associated with a number of human disorders. Hemophilia A is an X-linked severe bleeding disorder and is caused by mutations in the Factor VIII gene. The spectrum of mutations includes point mutations, rearrangements, insertions, and deletions. Recently, an Alu retrotransposition event in a coding exon has been reported in a family with a severe form of hemophilia A. This was the first report of an Alu insertion in the Factor VIII gene. Here, we report a second Alu insertion event that lies in an intron of the same gene that causes exon skipping and the complete disruption of gene expression.  相似文献   

13.
We constructed a series of mutations that delete sequences in the promoter region of the early-region IV (EIV) promoter of adenovirus type 5. We fused these promoter mutations to the coding sequences of either the chloramphenicol acetyltransferase or the dihydrofolate reductase (DHFR) gene and tested the ability of a cotransfected EIa gene to stimulate EIV expression. All of the mutations tested were stimulated in these assays, implying that no specific sequence is required for stimulation. Two mutant promoters, deleted for either the TATA box or the region residing between -39 and -177 upstream from the cap site of EIV mRNA, did show a reduced level of stimulation by the EIa products. To assess the effects of the EIA gene products on expression from an EIV promoter integrated into the chromosome, we isolated CHO cell lines containing EIV-DHFR chimeric genes. After introduction of the EIa gene with a second selectable marker, expression from all mutant EIV-DHFR genes was increased. Surprisingly, one mutant promoter, deleted for sequences between -39 and -177, lost the ability to respond to the EIa region on passage of cells, although deletions in any part of the region still retained this ability. These results demonstrate that multiple elements residing between -39 and -177 in the EIV promoter are necessary to maintain susceptibility of the integrated promoter to regulation.  相似文献   

14.
The Trithorax-like (Trl) gene of Drosophila melanogaster encodes the multifunctional protein GAGA involved in many cellular processes. We have isolated and described a new hypomorphic mutation of the Trl gene--Trl(en82). The mutation is the insertion of a 1.4 kb P-element into the 5' untranslated region. Trl expression decreased in the ovaries of mutant flies by about 30%; however, it caused abnormalities. The Trl(en82) mutation combined with the null allele of Trl caused female sterility: the females laid a few small eggs with abnormal shape. Many egg chambers demonstrated abnormalities in the Trl(en82) mutants: the oocyte had a regular shape and intruded into the egg chamber region with nurse cells; the rapid transport of nurse cell cytoplasm into the oocyte was disturbed, which resulted in the "dumpless" phenotype of the chambers in mutants; follicular cells often did not completely cover the oocyte and concentrated on its posterior end; and the migration of centripetal cells was affected. We propose that the sterility of the Trl(en82) females is due to the abnormal functioning of follicular cells resulting from low Trl expression. This proposal is confirmed by normalizing the mutant phenotype of Trl(en82) females after the transfection of Trl cDNA. Note that even an insignificant decrease in Trl expression in such females seriously affected the somatic cell functioning, while a significant decrease in its expression in strong hypomorphic mutants affected both somatic and germline cells in the egg chambers.  相似文献   

15.
16.
17.
In this report, we investigate how nestin expression is controlled in neural progenitor cells of the embryonic CNS. A 374-bp region in the second intron of the human nestin gene is sufficient, and a 120-bp sequence in this region is required, to express the lacZ reporter gene throughout the developing CNS of E9.5-10.5 transgenic mouse embryos. The 120-bp element region contains putative binding sites for nuclear hormone receptors and we show that TRs, RXR, RAR, and COUP-TF bind to these motifs. A separate enhancer, located most probably 5' to the 120-bp sequence in the second intron, controls midbrain expression at E10.5. In conclusion, our data show that the nestin enhancer in the second intron contains elements both for general and for region-specific CNS progenitor cell expression and suggest that nuclear hormone receptors play a role in the regulation of nestin expression in the early CNS.  相似文献   

18.
19.
20.
The most common, X-linked, form of chronic granulomatous disease (CGD) is caused by mutations in the CYBB gene located at Xp21.1. The product of this gene is the large subunit of flavocytochrome b558, gp91phox, which forms the catalytic core of the antimicrobial superoxide-generating enzyme, NADPH oxidase. In the overwhelming majority of cases, mutations are family-specific and occur in the exonic regions of the gene, or more rarely at the intron/exon borders. Alternatively, they are large (often multi-gene) deletions. In addition, four mutations have been found in the promoter region. In contrast, very few intronic mutations have been reported. Here we describe an intronic mutation that causes X-linked CGD. A single nucleotide substitution in the middle of intron V creates a novel 5' splice site and results in multiple abnormal mRNA products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号