首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
17Beta-estradiol (E2) rapidly (<20 min) attenuates the ability of mu-opioids to hyperpolarize guinea pig hypothalamic neurons. We have used intracellular recordings from female guinea pig hypothalamic slices to characterize the receptor and intracellular pathway(s) mediating E2's rapid effects. E2 acts stereospecifically with physiologically relevant concentration-dependence (EC50 = 8 nM) to cause a fourfold reduction in the potency of the mu-opioid agonist (D-Ala2-N-Me-Phe4-Gly5-ol)-enkephalin and the GABA(B) agonist baclofen to activate an inwardly rectifying K+ conductance in hypothalamic neurons. Both the nonsteroidal estrogen diethylstilbestrol and the anti-estrogen ICI 164,384 blocked E2 actions to uncouple mu-opioid receptors. Using a pharmacological Schild analysis, we found that ICI 164,384 competed for this E2 receptor with a Ke of approximately 0.3 nM. The protein synthesis inhibitor cycloheximide did not block the estrogenic uncoupling of the mu-opioid receptor from its K+ channel, implying a rapid, nongenomic mechanism of E2 action. The effects of E2 were mimicked by the bath application of the protein kinase A (PKA) activators, forskolin and Sp-cAMP, and the protein kinase C (PKC) activator phorbol-12,13-dibutyrate. Furthermore, the selective PKA antagonists Rp-cAMP and KT5720, which have different chemical structures and modes of action, both blocked the effects of E2. In addition, the actions of E2 were blocked by the selective PKC inhibitor Calphostin C. Therefore, it appears that E2 can activate both PKA and PKC to cause a heterologous desensitization of both mu-opioid and GABA(B) receptors, which has the potential to alter synaptic transmission in many regions of the CNS.  相似文献   

2.
GPR30 contributes to estrogen-induced thymic atrophy   总被引:1,自引:0,他引:1  
The mechanisms by which prolonged estrogen exposures, such as estrogen therapy and pregnancy, reduce thymus weight, cellularity, and CD4 and CD8 phenotype expression, have not been well defined. In this study, the roles played by the membrane estrogen receptor, G protein-coupled receptor 30 (GPR30), and the intracellular estrogen receptors, estrogen receptor alpha (ERalpha) and beta (ERbeta), in 17beta-estradiol (E2)-induced thymic atrophy were distinguished by construction and the side-by-side comparison of GPR30-deficient mice with ERalpha and ERbeta gene-deficient mice. Our study shows that whereas ERalpha mediated exclusively the early developmental blockage of thymocytes, GPR30 was indispensable for thymocyte apoptosis that preferentially occurs in T cell receptor beta chain(-/low) double-positive thymocytes. Additionally, G1, a specific GPR30 agonist, induces thymic atrophy and thymocyte apoptosis, but not developmental blockage. Finally, E2 treatment attenuates the activation of nuclear factor-kappa B in CD25(-)CD4(-)CD8(-) double-negative thymocytes through an ERalpha-dependent yet ERbeta- and GPR30-independent pathway. Differential inhibition of nuclear factor-kappaB by ERalpha and GPR30 might underlie their disparate physiological effects on thymocytes. Our study distinguishes, for the first time, the respective contributions of nuclear and membrane E2 receptors in negative regulation of thymic development.  相似文献   

3.
4.
Here we report on the progress we have made in elucidating the mechanisms through which estrogen alters synaptic responses in hypothalamic neurons. We examined the modulation by estrogen of the coupling of various receptor systems to inwardly rectifying and small conductance, Ca(2+)-activated K(+) (SK) channels. We used intracellular sharp-electrode and whole-cell recordings in hypothalamic slices from ovariectomized female guinea pigs. Estrogen rapidly uncouples mu-opioid receptors from G protein-gated inwardly rectifying K(+) (GIRK) channels in beta-endorphin neurons, manifest by a reduction in the potency of mu-opioid receptor agonists to hyperpolarize these cells. This effect is blocked by inhibitors of protein kinase A and protein kinase C. Estrogen also uncouples gamma-aminobutyric acid (GABA)(B) receptors from the same population of GIRK channels coupled to mu-opioid receptors. At 24 h after steroid administration, the GABA(B)/GIRK channel uncoupling observed in GABAergic neurons of the preoptic area (POA) is associated with reduced agonist efficacy. Conversely, estrogen enhances the efficacy of alpha(1)-adrenergic receptor agonists to inhibit apamin-sensitive SK currents in these POA GABAergic neurons, and does so in both a rapid and sustained fashion. Finally, we observed a direct, steroid-induced hyperpolarization of both arcuate and POA neurons, among which gonadotropin-releasing hormone (GnRH) neurons are particularly sensitive. These findings indicate a richly complex yet coordinated steroid modulation of K(+) channel activity that serves to control the excitability of hypothalamic neurons involved in regulating the reproductive axis.  相似文献   

5.
A growing body of evidence concerning estrogen effects cannot be explained by the classic model of hormone action, which involves the binding to estrogen receptors (ERs) alpha and ERbeta and the interaction of the steroid-receptor complex with specific DNA sequences associated with target genes. Using c-fos proto-oncogene expression as an early molecular sensor of estrogen action in ERalpha-positive MCF7 and ER-negative SKBR3 breast cancer cells, we have discovered that 17beta-estradiol (E2), and the two major phytoestrogens, genistein and quercetin, stimulate c-fos expression through ERalpha as well as through an ER-independent manner via the G protein-coupled receptor homologue GPR30. The c-fos response is repressed in GPR30-expressing SKBR3 cells transfected with an antisense oligonucleotide against GPR30 and reconstituted in GPR30-deficient MDA-MB 231 and BT-20 breast cancer cells transfected with a GPR30 expression vector. GPR30-dependent activation of ERK1/2 by E2 and phytoestrogens occurs via a Gbetagamma-associated pertussis toxin-sensitive pathway that requires both Src-related and EGF receptor tyrosine kinase activities. The ability of E2 and phytoestrogens to regulate the expression of growth-related genes such as c-fos even in the absence of ER has interesting implications for understanding breast cancer progression.  相似文献   

6.
GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane.  相似文献   

7.
Estrogen rapidly activates the mitogen-activated protein kinases, Erk-1 and Erk-2, via an as yet unknown mechanism. Here, evidence is provided that estrogen-induced Erk-1/-2 activation occurs independently of known estrogen receptors, but requires the expression of the G protein-coupled receptor homolog, GPR30. We show that 17beta-estradiol activates Erk-1/-2 not only in MCF-7 cells, which express both estrogen receptor alpha (ER alpha) and ER beta, but also in SKBR3 breast cancer cells, which fail to express either receptor. Immunoblot analysis using GPR30 peptide antibodies showed that this estrogen response was associated with the presence of GPR30 protein in these cells. MDA-MB-231 breast cancer cells (ER alpha-, ER beta+) are GPR30 deficient and insensitive to Erk-1/-2 activation by 17beta-estradiol. Transfection of MDA-MB-231 cells with a GPR30 complementary DNA resulted in overexpression of GPR30 protein and conversion to an estrogen-responsive phenotype. In addition, GPR30-dependent Erk-1/-2 activation was triggered by ER antagonists, including ICI 182,780, yet not by 17alpha-estradiol or progesterone. Consistent with acting through a G protein-coupled receptor, estradiol signaling to Erk-1/-2 occurred via a Gbetagamma-dependent, pertussis toxin-sensitive pathway that required Src-related tyrosine kinase activity and tyrosine phosphorylation of tyrosine 317 of the Shc adapter protein. Reinforcing this idea, estradiol signaling to Erk-1/-2 was dependent upon trans-activation of the epidermal growth factor (EGF) receptor via release of heparan-bound EGF (HB-EGF). Estradiol signaling to Erk-1/-2 could be blocked by: 1) inhibiting EGF-receptor tyrosine kinase activity, 2) neutralizing HB-EGF with antibodies, or 3) down-modulating HB-EGF from the cell surface with the diphtheria toxin mutant, CRM-197. Our data imply that ER-negative breast tumors that continue to express GPR30 may use estrogen to drive growth factor-dependent cellular responses.  相似文献   

8.
Estrogen rapidly alters the excitability of hypothalamic neurons that are involved in regulating numerous homeostatic functions including reproduction, stress responses, feeding and motivated behaviors. Some of the neurons include neurosecretory neurons such as gonadotropin-releasing hormone (GnRH) and dopamine neurons, and local circuitry neurons such as proopiomelanocortin (POMC) and γ-aminobutyric acid (GABA) neurons. We have elucidated several non-genomic pathways through which the steroid alters synaptic responses in these hypothalamic neurons. We have examined the modulation by estrogen of the coupling of various receptor systems to inwardly-rectifying and small-conductance, Ca2+-activated K+ (SK) channels using intracellular sharp-electrode and whole-cell recording techniques in hypothalamic slices from ovariectomized female guinea pigs. Estrogen rapidly uncouples μ-opioid receptors from G protein-gated inwardly-rectifying K+ (GIRK) channels in POMC neurons and GABAB receptors from GIRK channels in dopamine neurons as manifested by a reduction in the potency of μ-opioid and GABAB receptor agonists to hyperpolarize their respective cells. This effect is blocked by inhibitors of protein kinase A (PKA) and protein kinase C (PKC). In addition, after 24 h following steroid administration in vivo, the GABAB/GIRK channel uncoupling observed in GABAergic neurons of the preoptic area is associated with reduced agonist efficacy. Conversely, estrogen enhances the efficacy of 1-adrenergic receptor agonists to inhibit apamin-sensitive SK currents in these preoptic GABAergic neurons, and does so in both a rapid and sustained fashion. Finally, we observed a direct, steroid-induced hyperpolarization of GnRH neurons. These findings indicate a richly complex yet coordinated steroid modulation of K+ channel activity in hypothalamic (POMC, dopamine, GABA, GnRH) neurons that are involved in regulating numerous homeostatic functions.  相似文献   

9.
1. Noradrenaline, isoprenaline, and phenylephrine have been applied my microiontophoresis to neurones in the guinea pig cerebral cortex. All three compounds produced depression of neuronal firing, and all could be antagonized to some extent by phentolamine or propranolol. 2. The responses to isoprenaline were substantially reduced in size after a few applications. Noradrenaline and phenylephrine responses were partially reduced at the time of isoprenaline insensitivity, and the responses could now be blocked completely by phentolamine. 3. The results suggest that two kinds of receptors are present in the guinea pig cerebral cortex, with properties similar to alpha and beta receptors in the periphery. A single receptor with intermediate properties would not readily explain the present results. 4. The results are not consistent with the proposal that alpha receptors mediate neuronal excitation, and beta receptors inhibition in the cerebral cortex. 5. It is also suggested that the failure of some previous studies on guinea pig cortex in vitro to demonstrate the presence of beta receptors may be due to the particularly rapid desensitization of these receptors.  相似文献   

10.
Signaling mechanisms coupled to activation of different neurotransmitter receptors interact in the enteric nervous system. ACh excites myenteric neurons by activating nicotinic ACh receptors (nAChRs) and muscarinic receptors expressed by the same neurons. These studies tested the hypothesis that muscarinic receptor activation alters the functional properties of nAChRs in guinea pig small intestinal myenteric neurons maintained in primary culture. Whole cell patch-clamp techniques were used to measure inward currents caused by ACh (1 mM) or nicotine (1 mM). Currents caused by ACh and nicotine were blocked by hexamethonium (100 microM) and showed complete cross desensitization. The rate and extent of nAChR desensitization was greater when recordings were obtained with ATP/GTP-containing compared with ATP/GTP-free pipette solutions. These data suggest that ATP/GTP-dependent mechanisms increase nAChR desensitization. The muscarinic receptor antagonist scopolamine (1 microM) decreased desensitization caused by ACh but not by nicotine, which does not activate muscarinic receptors. Phorbol 12,13-dibutyrate (10-100 nM), an activator of protein kinase C (PKC), but not 4-alpha-phorbol 12-myristate 13-acetate (a PKC inactive phorbol ester), increased nAChR desensitization caused by ACh and nicotine. Forskolin (1 microM), an activator of adenylate cyclase, increased nAChR desensitization, but this effect was mimicked by dideoxyforskolin, an adenylate cyclase inactive forskolin analog. These data indicate that simultaneous activation of nAChRs and muscarinic receptors increases nAChR desensitization. This effect may involve activation of a PKC-dependent pathway. These data also suggest that nAChRs and muscarinic receptors are coupled functionally through an intracellular signaling pathway in myenteric neurons.  相似文献   

11.
The estrogen 17β-estradiol (E2) modulates dendritic spine plasticity in the cornu ammonis 1 (CA1) region of the hippocampus, and GPR30 (G-protein coupled estrogen receptor 1 (GPER1)) is an estrogen-sensitive G-protein-coupled receptor (GPCR) that is expressed in the mammalian brain and in specific subregions that are responsive to E2, including the hippocampus. The subcellular localization of hippocampal GPR30, however, remains unclear. Here, we demonstrate that GPR30 immunoreactivity is detected in dendritic spines of rat CA1 hippocampal neurons in vivo and that GPR30 protein can be found in rat brain synaptosomes. GPR30 immunoreactivity is identified at the post-synaptic density (PSD) and in the adjacent peri-synaptic zone, and GPR30 can associate with the spine scaffolding protein PSD-95 both in vitro and in vivo. This PSD-95 binding capacity of GPR30 is specific and determined by the receptor C-terminal tail that is both necessary and sufficient for PSD-95 interaction. The interaction with PSD-95 functions to increase GPR30 protein levels residing at the plasma membrane surface. GPR30 associates with the N-terminal tandem pair of PDZ domains in PSD-95, suggesting that PSD-95 may be involved in clustering GPR30 with other receptors in the hippocampus. We demonstrate that GPR30 has the potential to associate with additional post-synaptic GPCRs, including the membrane progestin receptor, the corticotropin releasing hormone receptor, and the 5HT1a serotonin receptor. These data demonstrate that GPR30 is well positioned in the dendritic spine compartment to integrate E2 sensitivity directly onto multiple inputs on synaptic activity and might begin to provide a molecular explanation as to how E2 modulates dendritic spine plasticity.  相似文献   

12.
13.
14.
Recent experiments from our laboratory are consistent with the idea that hypothalamic astrocytes are critical components of the central nervous system (CNS) mediated estrogen positive feedback mechanism. The "astrocrine hypothesis" maintains that ovarian estradiol rapidly increases free cytoplasmic calcium concentrations ([Ca(2+)](i)) that facilitate progesterone synthesis in astrocytes. This hypothalamic neuroprogesterone along with the elevated estrogen from the ovaries allows for the surge release of gonadotropin-releasing hormone (GnRH) that triggers the pituitary luteinizing hormone (LH) surge. A narrow range of estradiol stimulated progesterone production supports an "off-on-off" mechanism regulating the transition from estrogen negative feedback to estrogen positive feedback, and back again. The rapidity of the [Ca(2+)](i) response and progesterone synthesis support a non-genomic, membrane-initiated signaling mechanism. In hypothalamic astrocytes, membrane-associated estrogen receptors (mERs) signal through transactivation of the metabotropic glutamate receptor type 1a (mGluR1a), implying that astrocytic function is influenced by surrounding glutamatergic nerve terminals. Although other putative mERs, such as mERβ, STX-activated mER-Gα(q), and G protein-coupled receptor 30 (GPR30), are present and participate in membrane-mediated signaling, their influence in reproduction is still obscure since female reproduction be it estrogen positive feedback or lordosis behavior requires mERα. The astrocrine hypothesis is also consistent with the well-known sexual dimorphism of estrogen positive feedback. In rodents, only post-pubertal females exhibit this positive feedback. Hypothalamic astrocytes cultured from females, but not males, responded to estradiol by increasing progesterone synthesis. Estrogen autoregulates its own signaling by regulating levels of mERα in the plasma membrane of female astrocytes. In male astrocytes, the estradiol-induced increase in mERα was attenuated, suggesting that membrane-initiated estradiol signaling (MIES) would also be blunted. Indeed, estradiol induced [Ca(2+)](i) release in male astrocytes, but not to levels required to stimulate progesterone synthesis. Investigation of this sexual differentiation was performed using hypothalamic astrocytes from post-pubertal four core genotype (FCG) mice. In this model, genetic sex is uncoupled from gonadal sex. We demonstrated that animals that developed testes (XYM and XXM) lacked estrogen positive feedback, strongly suggesting that the sexual differentiation of progesterone synthesis is driven by the sex steroid environment during early development. This article is part of a Special Issue entitled 'Neurosteroids'.  相似文献   

15.
The female sex hormone estradiol plays an important role in reproduction, mammary gland development, bone turnover, metabolism, and cardiovascular function. The effects of estradiol are mediated by two classical nuclear receptors, estrogen receptor α (ERα) and estrogen receptor β (ERβ).In 2005, G-protein-coupled receptor 30 (GPR30) was claimed to act as a non-classical estrogen receptor that was also activated by the ERα and ERβ antagonists tamoxifen and fulvestrant (ICI 182780). Despite many conflicting results regarding the potential role of GPR30 as an estrogen receptor, the official nomenclature was changed to GPER (G-protein-coupled estrogen receptor).This review revisits the inconsistencies that still exist in the literature and focuses on selected publications that basically address the following two questions: what is the evidence for and against the hypothesis that GPR30 acts as an estrogen receptor? What is the potential in vivo role of GPR30?Thus, in the first part we focus on conflicting results from in vitro studies analysing the subcellular localization of GPR30, its ability to bind (or not to bind) estradiol and to signal (or not to signal) in response to estradiol. In the second part, we discuss the strengths and limitations of four available GPR30 mouse models. We elucidate the potential impact of different targeting strategies on phenotypic diversity.  相似文献   

16.
Position paper: The membrane estrogen receptor GPER - Clues and questions   总被引:1,自引:0,他引:1  
Barton M 《Steroids》2012,77(10):935-942
Rapid signaling of estrogen involves membrane estrogen receptors (ERs), including membrane subpopulations of ERα and ERβ. In the mid-1990s, several laboratories independently reported the cloning of an orphan G protein-coupled receptor from vascular and cancer cells that was named GPR30. Research published between 2000 and 2005 provided evidence that GPR30 binds and signals via estrogen indicating that this intracellular receptor is involved in rapid, non-genomic estrogen signaling. The receptor has since been designated as the G protein-coupled estrogen receptor (GPER) by the International Union of Pharmacology. The availability of genetic tools such as different lines of GPER knock-out mice, as well as GPER-selective agonists and antagonists has advanced our understanding, but also added some confusion about the new function of this receptor. GPER not only binds estrogens but also other substances, including SERMs, SERDs, and environmental ER activators (endocrine disruptors; xenoestrogens) and also interacts with other proteins. This article represents a summary of a lecture given at the 7(th) International Meeting on Rapid Responses to Steroid Hormones in September 2011 in Axos, Crete, and reviews the current knowledge and questions about GPER-dependent signaling and function. Controversies that have complicated our understanding of GPER, including interactions with human ERα-36 and aldosterone as a potential ligand, will also be discussed.  相似文献   

17.
Immature rabbits, guinea pigs and mice were injected with estradiol cyclopentylpropionate (ECP) or diethylstilbestrol (DES) for 3 days to evaluate whether estrogen enhances follicular maturation. Also, estrogen receptors in the ovary and uterus from these animals were measured. Uterine weight increased in all animals treated with ECP or DES, whereas actual ovarian weight increased only in the guinea pig. This correlated with the ability of estrogens to significantly increase the number of antral follicles in the guinea pig ovary. In the rabbit and mouse, estrogen increased only the number of small or large preantral follicles. However, the number of estrogen binding sites in the ovarian cytosol and nucleus was greater in the rabbit and the mouse than in the guinea pig. The affinity of ovarian cytosol receptors was the lowest for the guinea pig among the 3 species. Thus it is seen that estrogen does not enhance follicular maturation in all animal species. The ovarian response to estrogen is not only dependent upon estrogen receptors but also unknown mechanism(s) that may be related to paracrine or autocrine functions.  相似文献   

18.
We constructed and expressed in a permanent cell line a beta 2-adrenergic receptor with a valine substitution for cysteine 184 of the second putative extracellular loop. The mutant receptor was partially uncoupled from adenylyl cyclase with impaired ability to form the high affinity agonist-receptor-G protein complex, yet displayed more rapid and extensive agonist-induced desensitization. The enhanced desensitization was accompanied by increased agonist promoted, but not cAMP promoted, receptor phosphorylation in intact cells. Thus, not only is impaired desensitization associated with decreased phosphorylation, as we have shown with several mutant beta 2-adrenergic receptors recently, but enhanced desensitization is accompanied by increased agonist promoted receptor phosphorylation. In the case of this cysteine mutant, this may be due to the greater accessibility of the uncoupled receptor for phosphorylation by the beta-adrenergic receptor kinase.  相似文献   

19.
P2X receptors are ATP-gated cationic channels composed of seven cloned subunits (P2X1 –7). P2X3 homomultimer and P2X2/3 heteromultimer receptors expressed by primary afferent dorsal root ganglion (DRG) neurons are involved in pain processing. The aim of the study was to investigate the expression of the P2X5 receptor subunit in DRG in different species including mouse, rat, cat and guinea pig. Immunohistochemistry showed that P2X5 receptors exhibited low levels of immunostaining in rat DRG, but high levels in mouse and guinea pig. Only a few neurons were immunoreactive for P2X5 receptors in cat. In mouse DRG, the P2X5 receptor was expressed largely by medium-diameter neurons (42.9 %), less in small (29.3 %) and large (27.8 %) neurons. In contrast, in the guinea pig DRG, P2X5 receptor expression was greatest in small-diameter (42.6 %), less in medium- (36.3 %) and large-diameter (21.1 %) neurons. Colocalization experiments revealed that, in mouse DRG, 65.5, 10.9 and 27.1 % of P2X5 receptors were immunoreactive for NF-200, CGRP and calbindin, while only a few P2X5-immunoreactive (IR) neurons were coexpressed with IB4 or with NOS. In guinea pig DRG, a total of 60.5 and 40.5 % of P2X5-IR neurons were coexpressed with IB4 or with CGRP, while 20.3 and 24.5 % of P2X5 receptors were coexpressed with NF-200 or with NOS. Only a few P2X5-IR neurons were coexpressed with calbindin in guinea pig DRG. It will be of great interest to clarify the relative physiological and pathophysiological roles of P2X5 receptors.  相似文献   

20.
Filardo EJ  Quinn JA  Sabo E 《Steroids》2008,73(9-10):870-873
The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases function as a common signaling conduit for membrane receptors that lack intrinsic enzymatic activity, such as G-protein coupled receptors and integrins. GPR30, an orphan member of the seven transmembrane receptor (7TMR) superfamily has been linked to specific estrogen binding, rapid estrogen-mediated activation of adenylyl cyclase and the release of membrane-tethered proHB-EGF. More recently, GPR30 expression in primary breast adenocarcinoma has been associated with pathological parameters commonly used to assess breast cancer progression, including the development of extramammary metastases. This newly appreciated mechanism of cross communication between estrogen and EGF is consistent with the observation that 7TMR-mediated transactivation of the EGFR is a recurrent signaling paradigm and may explain prior data reporting the EGF-like effects of estrogen. The molecular details surrounding GPR30-mediated release of proHB-EGF, the involvement of integrin beta1 as a signaling intermediary in estrogen-dependent EGFR action, and the possible implications of these data for breast cancer progression are discussed herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号