首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A shortage in the zinc supply to spinach (Spinacia oleracea L.) drastically reduced carbonic anhydrase levels with little effect on net CO2 uptake per unit leaf area, except with the most severe zinc stresses. Under these conditions, carbonic anhydrase was below 10% and photosynthesis 60 to 70% of the control levels. When photosynthesis was measured at a range of CO2 supply levels, zinc-deficient leaves were less efficient at 300 to 350 microliters per liter CO2 and above, but the same as controls at lower CO2 levels. This suggests that carbonic anhydrase does not affect the diffusion of CO2, and that the effect of zinc deficiency was on the photosynthetic process itself. Our evidence does not support the hypothesis that carbonic anhydrase has some role in facilitating the supply of CO2 to the sites of carboxylation within the chloroplast.  相似文献   

2.
Inorganic carbon (Ci) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO2. Both air-grown cells, that have a CO2 concentrating system, and 5% CO2-grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (Ci) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO2-grown cells also accumulated some Ci, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO2 fixation by high CO2-grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO2-grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase.  相似文献   

3.
The new ligand hydrotris(3-(2′-furyl)-5-methylpyrazolyl)borate (TpFu,Me) was prepared by the usual procedure. With zinc salts, it forms the TpFu,MeZn-X complexes (X = Cl, Br, I, NCS, CH3COO, CF3COO). With zinc perchlorate, the bis-ligand complex Zn(TpFu,Me)2 is formed preferrably, but by carefully controlling the reaction conditions, the “enzyme model” TpFu,MeZn-OH could be obtained. The latter models carbonic anhydrase by inserting CO2 and CS2 in methanol producing TpFu,MeZn-OCOOMe and TpFu,MeZn-SCSOMe. It models hydrolases by the hydrolytic cleavage of tris(p-nitrophenyl)phosphate and γ-thiobutyrolactone. It does not hydrolyse trifluoroacetamide, but instead deprotonates it, yielding TpFu,MeZn-NHCOCF3.  相似文献   

4.
Previous reports have indicated positive effects of enriched rhizosphere dissolved inorganic carbon on the growth of salinity-stressed tomato (Lycopersicon esculentum L. Mill. cv. F144) plants. In the present work we tested whether a supply of CO2 enriched air to the roots of hydroponically grown tomato plants had an effect on nitrogen uptake in these plants. Uptake was followed over periods of 6 to 12 hours and measured as the depletion of nitrogen from the nutrient solution aerated with either ambient or CO2 enriched air. Enriched rhizosphere CO2 treatments (5000 μmol mol-1) increased NO3 - uptake up to 30% at pH 5.8 in hydroponically grown tomato plants compared to control treatments aerated with ambient CO2 (360 μmol mol-1). Enriched rhizosphere CO2 treatments had no effect on NH3 + uptake. Acetazolamide, an inhibitor of apoplastic carbonic anhydrase, increased NO3 - uptake in ambient rhizosphere CO2 treatments, but had no effect on NO3 - uptake in enriched rhizosphere CO2 treatments. Ethoxyzolamide, an inhibitor of both cytoplasmic and extracellular carbonic anhydrase, decreased NO3 - uptake in ambient rhizosphere CO2 treatments. In contrast, a CO2 enriched rhizosphere increased NO3 - uptake with ethoxyzolamide, although not to the same extent as in plants without ethoxyzolamide. It is suggested that a supply of enriched CO2 to the rhizosphere influenced NO3 - uptake through the formation of increased amounts of HCO3 - in the cytosol. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
We have examined the induction of carbonic anhydrase activity in Chlamydomonas reinhardtii and have identified the polypeptide responsible for this activity. This polypeptide was not synthesized when the alga was grown photoautotrophically on 5% CO2, but its synthesis was induced under low concentrations of CO2 (air levels of CO2). In CW-15, a mutant of C. reinhardtii which lacks a cell wall, between 80 and 90% of the carbonic anhydrase activity of air-adapted cells was present in the growth medium. Furthermore, between 80 and 90% of the carbonic anhydrase is released if wild type cells are treated with autolysin, a hydrolytic enzyme responsible for cell wall degradation during mating of C. reinhardtii. These data extend the work of Kimpel, Togasaki, Miyachi (1983 Plant Cell Physiol 24: 255-259) and indicate that the bulk of the carbonic anhydrase is located either in the periplasmic space or is loosely bound to the algal cell wall. The polypeptide associated with carbonic anhydrase activity has a molecular weight of approximately 37,000. Several lines of evidence indicate that this polypeptide is responsible for carbonic anhydrase activity: (a) it appears following the transfer of C. reinhardtii from growth on 5% CO2 to growth on air levels of CO2, (b) it is located in the periplasmic space or associated with the cell wall, like the bulk of the carbonic anhydrase activity, (c) it binds dansylamide, an inhibitor of the enzyme which fluoresces upon illumination with ultraviolet light, (d) antibodies which inhibit carbonic anhydrase activity only cross-react with this 37,000 dalton species.  相似文献   

6.
We tested a number of inhibitory monovalent anions for their primary site of action on photosystem II(PSII) in chloroplasts. We find that the inhibitory effects of F, HCO2, NO2, NO3, and CH3CO2 are all reversed by addition of a high concentration of HCO3. This class of anions competitively inhibits H14CO3 binding to PSII. All of those anions tested reduced H14CO3 binding more in the light than in the dark. We conclude that the primary inhibitory site of action of a number of monovalent anions is at the HCO3 binding site(s) on the PSII complex. The carbonic anhydrase inhibitor gold cyanide, and also azide, inhibit PSII but at a site other than the HCO3 binding site. We suggest that the unique ability of HCO3 to reverse the effects of inhibitory anions reflects its singular ability to act as a proton donor/acceptor at the anion binding site. A similar role has been proposed for non-substrate-bound HCO3 on carbonic anhydrase by Yeagle et al. (1975 Proc Natl Acad Sci USA 72: 454-458).  相似文献   

7.
Active CO(2) Transport by the Green Alga Chlamydomonas reinhardtii   总被引:6,自引:6,他引:0       下载免费PDF全文
Mass spectrometric measurements of dissolved free 13CO2 were used to monitor CO2 uptake by air grown (low CO2) cells and protoplasts from the green alga Chlamydomonas reinhardtii. In the presence of 50 micromolar dissolved inorganic carbon and light, protoplasts which had been washed free of external carbonic anhydrase reduced the 13CO2 concentration in the medium to close to zero. Similar results were obtained with low CO2 cells treated with 50 micromolar acetazolamide. Addition of carbonic anhydrase to protoplasts after the period of rapid CO2 uptake revealed that the removal of CO2 from the medium in the light was due to selective and active CO2 transport rather than uptake of total dissolved inorganic carbon. In the light, low CO2 cells and protoplasts incubated with carbonic anhydrase took up CO2 at an apparently low rate which reflected the uptake of total dissolved inorganic carbon. No net CO2 uptake occurred in the dark. Measurement of chlorophyll a fluorescence yield with low CO2 cells and washed protoplasts showed that variable fluorescence was mainly influenced by energy quenching which was reciprocally related to photosynthetic activity with its highest value at the CO2 compensation point. During the linear uptake of CO2, low CO2 cells and protoplasts incubated with carbonic anhydrase showed similar rates of net O2 evolution (102 and 108 micromoles per milligram of chlorophyll per hour, respectively). The rate of net O2 evolution (83 micromoles per milligram of chlorophyll per hour) with washed protoplasts was 20 to 30% lower during the period of rapid CO2 uptake and decreased to a still lower value of 46 micromoles per milligram of chlorophyll per hour when most of the free CO2 had been removed from the medium. The addition of carbonic anhydrase at this point resulted in more than a doubling of the rate of O2 evolution. These results show low CO2 cells of Chlamydomonas are able to transport both CO2 and HCO3 but CO2 is preferentially removed from the medium. The external carbonic anhydrase is important in the supply to the cells of free CO2 from the dehydration of HCO3.  相似文献   

8.
Membrane-permeable and impermeable inhibitors of carbonic anhydrase have been used to assess the roles of extracellular and intracellular carbonic anhydrase on the inorganic carbon concentrating system in Chlamydomonas reinhardtii. Acetazolamide, ethoxzolamide, and a membrane-impermeable, dextran-bound sulfonamide were potent inhibitors of extracellular carbonic anhydrase measured with intact cells. At pH 5.1, where CO2 is the predominant species of inorganic carbon, both acetazolamide and the dextran-bound sulfonamide had no effect on the concentration of CO2 required for the half-maximal rate of photosynthetic O2 evolution (K0.5[CO2]) or inorganic carbon accumulation. However, a more permeable inhibitor, ethoxzolamide, inhibited CO2 fixation but increased the accumulation of inorganic carbon as compared with untreated cells. At pH 8, the K0.5(CO2) was increased from 0.6 micromolar to about 2 to 3 micromolar with both acetazolamide and the dextran-bound sulfonamide, but to a higher value of 60 micromolar with ethoxzolamide. These results are consistent with the hypothesis that CO2 is the species of inorganic carbon which crosses the plasmalemma and that extracellular carbonic anhydrase is required to replenish CO2 from HCO3 at high pH. These data also implicate a role for intracellular carbonic anhydrase in the inorganic carbon accumulating system, and indicate that both acetazolamide and the dextran-bound sulfonamide inhibit only the extracellular enzyme. It is suggested that HCO3 transport for internal accumulation might occur at the level of the chloroplast envelope.  相似文献   

9.
The carbonic anhydrase (EC 4.2.1.1) of Rhodospirillum rubrum has been purified to apparent homogeneity and some of its properties have been determined. The enzyme was cytoplasmic and was found only in photosynthetically grown cells. It had a molecular weight of about 28,000, and was apparently composed of two equal subunits. The amino acid composition was similar to that of other reported carbonic anhydrases except that the R. rubrum enzyme contained no arginine. The isoelectric point of the enzyme was 6.2 and the pH optimum was 7.5. It required Zn(II) for stability and enzymatic activity. The K m(CO2) was 80 mM. Typical carbonic anhydrase inhibition patterns were found with the R. rubrum enzyme. Strong acetazolamide and sulfanilamide inhibition confirmed the importance of Zn(II) for enzymatic activity as did the anionic inhibitors iodide, and azide. Other inhibitors indicated that histidine, sulfhydryl, lysine and serine residues were important for enzymatic activity.Abbreviation CA carbonic anhydrase In memory of R. Y. Stanier  相似文献   

10.
The zinc(II) coordination chemistry of a series of diphenyldipyrazolylmethane ligands was explored using 1H NMR and single crystal X-ray diffraction. Unsubstituted diphenyldipyrazolylmethane (dpdpm), diphenylbis(3-methylpyrazolyl)methane (dpdp′m), and diphenylbis(3,5-dimethylpyrazolyl)methane (dpdp″m) were reacted with Zn(NO3)2 to afford Zn(dpdpm)(NO3)2, Zn(dpdp′m)(NO3)2 and Zn(Pz″)2(NO3)2 where Pz″ = 3,5-dimethylpyrazole, respectively. All attempts to isolate Zn(dpdp″m)(NO3)2 with the intact dpdp″m ligand were unsuccessful due to decomposition of the ligand. These bidentate ligands support the formation of 1:1 ligand to metal complexes and structurally model the two histidine coordination mode common in zinc proteins.  相似文献   

11.
In order to broaden our understanding of the eukaryotic CO2-concentrating mechanism the occurrence and localization of a thylakoid-associated carbonic anhydrase (EC 4.2.1.1) were studied in the green algae Tetraedron minimum and Chlamydomonas noctigama. Both algae induce a CO2-concentrating mechanism when grown under limiting CO2 conditions. Using mass-spectrometric measurements of 18O exchange from doubly labelled CO2, the presence of a thylakoid-associated carbonic anhydrase was confirmed for both species. From purified thylakoid membranes, photosystem I (PSI), photosystem II (PSII) and the light-harvesting complex of the photosynthetic apparatus were isolated by mild detergent gel. The protein fractions were identified by 77 K fluorescence spectroscopy and immunological studies. A polypeptide was found to immunoreact with an antibody raised against thylakoid carbonic anhydrase (CAH3) from Chlamydomonas reinhardtii. It was found that this polypeptide was mainly associated with PSII, although a certain proportion was also connected to light harvesting complex II. This was confirmed by activity measurements of carbonic anhydrase in isolated bands extracted from the mild detergent gel. The thylakoid carbonic anhydrase isolated from T. minimum had an isoelectric point between 5.4 and 4.8. Together the results are consistent with the hypothesis that thylakoid carbonic anhydrase resides within the lumen where it is associated with the PSII complex. Received: 13 May 2000 / Accepted: 16 August 2000  相似文献   

12.
Cell extracts (27000xg supernatant) of acetate grown Methanosarcina barkeri were found to have carbonic anhydrase activity (0.41 U/mg protein), which was lost upon heating or incubation with proteinase K. The activity was inhibited by Diamox (apparent K i=0.5 mM), by azide (apparent K i=1 mM), and by cyanide (apparent K i=0.02 mM). These and other properties indicate that the archaebacterium contains the enzyme carbonic anhydrase (EC 4.2.1.1). Evidence is presented that the protein is probably located in the cytoplasm. Methanol or H2/CO2 grown cells of M. barkeri showed no or only very little carbonic anhydrase activity. After transfer of these cells to acetate medium the activity was induced suggesting a function of this enzyme in acetate fermentation to CO2 and CH4. Interestingly, Desulfobacter postgatei and Desulfotomaculum acetoxidans, which oxidize acetate to 2 CO2 with sulfate as electron acceptor, were also found to exhibit carbonic anhydrase activity (0.2 U/mg protein).  相似文献   

13.
Basic muscle protein,a third genetic locus isoenzyme of carbonic anhydrase?   总被引:4,自引:0,他引:4  
Rabbit muscle cytosol extract contains a basic protein which represents about 2% of the total cytosol protein. It contains zinc in a 1:1 stoichiometric ratio, based on a molecular weight of 30,000, and it catalyzes the hydration of CO2. It is immunochemically distinct from the high and low activity forms of rabbit blood carbonic anhydrase. It has comparatively poor activity as an esterase, and about 20% of the CO2 hydratase activity of the rabbit blood low activity carbonic anhydrase. This CO2 hydratase activity is not inhibited by acetazolamide at concentrations which totally inhibit the activity of the blood carbonic anhydrases. The evidence obtained to date, though circumstantial, suggests that this basic metalloprotein is a carbonic anhydrase derived from a third genetic locus with properties considerably different from those of the mammalian carbonic anhydrases heretofore identified.  相似文献   

14.
We studied the effects of heavy metal salts (Pb(NO3)2, CuSO4, and ZnSO4) on phytohormonal status and sex expression in various cultivars of marijuana (Cannabis sativa L.), a dioecious plant, grown on Knop nutrient medium. Pb(NO3)2 and ZnSO4 were added to the medium at the concentration of 10−9 M, and CuSO4, at the concentration of 10−10 M. Plant were grown under controlled conditions at luminescent illumination, 22–24°C, and 80% humidity. The contents of GA and zeatin were determined by HPLC. Copper and zinc salts induced plant feminization, and this effect was coupled with zeatin accumulation. Lead salts favored plant masculinization coupled with GA accumulation. Thus, a shift in sex expression in marijuana plants was correlated with the heavy metal action on the balance of phytohormones, GA and zeatin.  相似文献   

15.
Carbonyl sulfide (COS), a substrate for carbonic anhydrase, inhibited alkalization of the medium, O2 evolution, dissolved inorganic carbon accumulation, and photosynthetic CO2 fixation at pH 7 or higher by five species of unicellular green algae that had been air-adapted for forming a CO2-concentrating process. This COS inhibition can be attributed to inhibition of external HCO3 conversion to CO2 and OH by the carbonic anhydrase component of an active CO2 pump. At a low pH of 5 to 6, COS stimulated O2 evolution during photosynthesis by algae with low CO2 in the media without alkalization of the media. This is attributed to some COS hydrolysis by carbonic anhydrase to CO2. Although COS had less effect on HCO3 accumulation at pH 9 by a HCO3 pump in Scenedesmus, COS reduced O2 evolution probably by inhibiting internal carbonic anhydrases. Because COS is hydrolyzed to CO2 and H2S, its inhibition of the CO2 pump activity and photosynthesis is not accurate, when measured by O2 evolution, by NaH14CO3 accumulation, or by 14CO2 fixation.  相似文献   

16.
In the green marine alga Dunaliella tertiolecta, a CO2-concentrating mechanism is induced when the cells are grown under low-CO2 conditions (0.03% CO2). To identify proteins induced under low-CO2 conditions the cells were labelled with 35SO4 2–, and seven polypeptides with molecular weights of 45, 47, 49, 55, 60, 68 and 100 kDa were detected. The induction of these polypeptides was observed when cells grown in high CO2 (5% CO2 in air) were switched to low CO2, but only while the cultures were growing in light. Immunoblot analysis of total cell protein against pea chloroplastic carbonic anhydrase polyclonal antibodies showed immunoreactive 30-kDa bands in both high- and low-CO2-grown cells and an aditional 49-kDa band exclusively in low-CO2-grown cells. The 30-kDa protein was shown to be located in the chloroplast. Western blot analysis of the plasmamembrane fraction against corn plasma-membrane AT-Pase polyclonal antibodies showed 60-kDa bands in both high- and low-CO2 cell types as well as an immunoreactive 100-kDa band occurring only in low-CO2-grown cells. These results suggest that there are two distinct forms of both carbonic anhydrase and plasma-membrane ATPase, and that one form of each of them can be regulated by the CO2 concentration.Abbreviations CA carbonic anhydrase - DIC dissolved inorganic carbon (CO2+ HCO3 ) - CCM CO2-concentrating mechanism - low CO2 air containing 0.03% CO2 - high CO2 air supplemented with 5% CO2 (v/v) We thank Prof. John Coleman for providing antibodies raised against pea chloroplast CA, Dr. James V. Moroney for providing antibodies raised against the 37-kDa periplasmic carbonic anhydrase of CO2 Chlamydomonas reinhardtii, and Prof. Leonard T. Robert for a gift of corn plasma-membrane 100-kDa ATPase antibodies. We thank Dr. Jeanine Olsen (University of Groningen, the Netherlands) for style comments. This work was supported by the Institute Tecnológico de Canarias (Spain).  相似文献   

17.
It is known, that the multi-subunit complex of photosystem II (PSII) and some of its single proteins exhibit carbonic anhydrase activity. Previously, we have shown that PSII depletion of HCO3?/CO2 as well as the suppression of carbonic anhydrase activity of PSII by a known inhibitor of α?carbonic anhydrases, acetazolamide (AZM), was accompanied by a decrease of electron transport rate on the PSII donor side. It was concluded that carbonic anhydrase activity was required for maximum photosynthetic activity of PSII but it was not excluded that AZM may have two independent mechanisms of action on PSII: specific and nonspecific. To investigate directly the specific influence of carbonic anhydrase inhibition on the photosynthetic activity in PSII we used another known inhibitor of α?carbonic anhydrase, trifluoromethanesulfonamide (TFMSA), which molecular structure and physicochemical properties are quite different from those of AZM. In this work, we show for the first time that TFMSA inhibits PSII carbonic anhydrase activity and decreases rates of both the photo-induced changes of chlorophyll fluorescence yield and the photosynthetic oxygen evolution. The inhibitory effect of TFMSA on PSII photosynthetic activity was revealed only in the medium depleted of HCO3?/CO2. Addition of exogenous HCO3? or PSII electron donors led to disappearance of the TFMSA inhibitory effect on the electron transport in PSII, indicating that TFMSA inhibition site was located on the PSII donor side. These results show the specificity of TFMSA action on carbonic anhydrase and photosynthetic activities of PSII. In this work, we discuss the necessity of carbonic anhydrase activity for the maximum effectiveness of electron transport on the donor side of PSII.  相似文献   

18.
Carbonic anhydrases in plants and algae   总被引:12,自引:1,他引:12  
Carbonic anhydrases catalyse the reversible hydration of CO2, increasing the interconversion between CO2 and HCO3 + H+ in living organisms. The three evolutionarily unrelated families of carbonic anhydrases are designated α-, β-and γ-CA. Animals have only the α-carbonic anhydrase type of carbonic anhydrase, but they contain multiple isoforms of this carbonic anhydrase. In contrast, higher plants, algae and cyanobacteria may contain members of all three CA families. Analysis of the Arabidopsis database reveals at least 14 genes potentially encoding carbonic anhydrases. The database also contains expressed sequence tags (ESTs) with homology to most of these genes. Clearly the number of carbonic anhydrases in plants is much greater than previously thought. Chlamydomonas, a unicellular green alga, is not far behind with five carbonic anhydrases already identified and another in the EST database. In algae, carbonic anhydrases have been found in the mitochondria, the chloroplast thylakoid, the cytoplasm and the periplasmic space. In C3 dicots, only two carbonic anhydrases have been localized, one to the chloroplast stroma and one to the cytoplasm. A challenge for plant scientists is to identify the number, location and physiological roles of the carbonic anhydrases.  相似文献   

19.
Microbial carbonic anhydrase promotes carbonate deposition, which is important in the formation and evolution of global carbon cycle and geological processes. A kind of bacteria producing extracellular carbonic anhydrase was selected to study the effects of temperature, pH value and Ca2+ concentration on bacterial growth, carbonic anhydrase activity and calcification rate in this paper. The results showed that the activity of carbonic anhydrase at 30 °C was the highest, which was beneficial to the calcification reaction, calcification rate of CaCO3 was the fastest in alkaline environment with the initial pH value of 9.0. When the Ca2+ concentration was 60 mM, compared with other Ca2+ concentration, CA bacteria could grow and reproduce best, and the activity of bacteria was the highest, too low Ca2+ concentration would affect the generation of CaCO3, while too high Ca2+ concentration would seriously affect the growth of bacteria and reduce the calcification rate. Finally, the mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase was studied. Carbonic anhydrase can accelerate the hydration of CO2 into HCO3, and react with OH and Ca2+ to form CaCO3 precipitation in alkaline environment and in the presence of calcium source.  相似文献   

20.
Dictyota menstrualis (Hoyt) Schnetter, Hörning & Weber-Peukert (Dictyotales, Phaeophyceae) was studied for the production of oil-based bioproducts and co-products. Experiments were performed to evaluate the effect of carbon dioxide (CO2) concentration, under nitrogen (NO3 ?) limiting and saturation conditions, on growth rate (GR), photosynthesis, as well as nitrate reductase (NR), carbonic anhydrase (CA), and Rubisco activities. In addition, the biochemical composition of D. menstrualis under these conditions was estimated. GR, protein content, and N content in D. menstrualis were higher in treatments containing NO3 ?, irrespective of CO2 addition. However, when CO2 was added to medium saturated with NO3 ?, values of maximum photosynthesis, Rubisco, and NR activity, as well as total soluble carbohydrates and lipids, were increased. CA activity did not vary under the different treatments. The fatty acid profile of D. menstrualis was characterized by a high content of polyunsaturated fatty acids, especially the omega-3 fatty acids, making it a possible candidate for nutraceutical use. In addition, this species presented high GR, photosynthetic rate, and fatty acid content, highlighting its economic importance and the possibility of different biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号