首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Properly regulated apoptosis in the developing central nervous system is crucial for normal morphogenesis and homeostasis. In Drosophila, a subset of neural stem cells, or neuroblasts, undergo apoptosis during embryogenesis. Of the 30 neuroblasts initially present in each abdominal hemisegment of the embryonic ventral nerve cord, only three survive into larval life, and these undergo apoptosis in the larvae. Here, we use loss-of-function analysis to demonstrate that neuroblast apoptosis during embryogenesis requires the coordinated expression of the cell death genes grim and reaper, and possibly sickle. These genes are clustered in a 140 kb region of the third chromosome and show overlapping patterns of expression. We show that expression of grim, reaper and sickle in embryonic neuroblasts is controlled by a common regulatory region located between reaper and grim. In the absence of grim and reaper, many neuroblasts survive the embryonic period of cell death and the ventral nerve cord becomes massively hypertrophic. Deletion of grim alone blocks the death of neuroblasts in the larvae. The overlapping activity of these multiple cell death genes suggests that the coordinated regulation of their expression provides flexibility in this crucial developmental process.  相似文献   

2.
3.
We have studied the division of postembryonic neuroblasts (Nbs) in the outer proliferation center (OPC) and central brain anlagen of Drosophila. We focused our attention on three aspects of these processes: the pattern of cellular division, the topological orientation of those divisions, and the expression of asymmetric cell fate determinants. Although larval Nbs are of embryonic origin, our results indicate that their properties appear to be modified during development. Several conclusions can be summarized: (i) In early larvae, Nbs divide symmetrically to give rise to two Nbs while in the late larval brain most Nbs divide asymmetrically to bud off an intermediate ganglion mother cell (GMC) that very rapidly divides into two ganglion cells (GC). (ii) Symmetric and asymmetric divisions of OPC Nbs show tangential and radial orientations, respectively. (iii) This change in the pattern of division correlates with the expression of inscuteable, which is apically localized only in asymmetric divisions. (iv) The spindle of asymmetrically dividing Nb is always oriented on an apical-basal axis. (v) Prospero does not colocalize with Miranda in the cortical crescent of mitotic Nbs. (vi) Prospero is transiently expressed in one of the two sibling GCs generated by the division of GMCs. The implications of these results on cell fate specification and differentiation of adult brain neurons are discussed.  相似文献   

4.
Grice SJ  Liu JL 《PLoS genetics》2011,7(4):e1002030
Spinal muscular atrophy is a severe neurogenic disease that is caused by mutations in the human survival motor neuron 1 (SMN1) gene. SMN protein is required for the assembly of small nuclear ribonucleoproteins and a dramatic reduction of the protein leads to cell death. It is currently unknown how the reduction of this ubiquitously essential protein can lead to tissue-specific abnormalities. In addition, it is still not known whether the disease is caused by developmental or degenerative defects. Using the Drosophila system, we show that SMN is enriched in postembryonic neuroblasts and forms a concentration gradient in the differentiating progeny. In addition to the developing Drosophila larval CNS, Drosophila larval and adult testes have a striking SMN gradient. When SMN is reduced in postembryonic neuroblasts using MARCM clonal analysis, cell proliferation and clone formation defects occur. These SMN mutant neuroblasts fail to correctly localise Miranda and have reduced levels of snRNAs. When SMN is removed, germline stem cells are lost more frequently. We also show that changes in SMN levels can disrupt the correct timing of cell differentiation. We conclude that highly regulated SMN levels are essential to drive timely cell proliferation and cell differentiation.  相似文献   

5.
Cell division often generates unequally sized daughter cells by off-center cleavages, which are due to either displacement of mitotic spindles or their asymmetry. Drosophila neuroblasts predominantly use the latter mechanism to divide into a large apical neuroblast and a small basal ganglion mother cell (GMC), where the neural fate determinants segregate. Apically localized components regulate both the spindle asymmetry and the localization of the determinants. Here, we show that asymmetric spindle formation depends on signaling mediated by the G beta subunit of heterotrimeric G proteins. G beta 13F distributes throughout the neuroblast cortex. Its lack induces a large symmetric spindle and causes division into nearly equal-sized cells with normal segregation of the determinants. In contrast, elevated G beta 13F activity generates a small spindle, suggesting that this factor suppresses spindle development. Depletion of the apical components also results in the formation of a small symmetric spindle at metaphase. Therefore, the apical components and G beta 13F affect the mitotic spindle shape oppositely. We propose that differential activation of G beta signaling biases spindle development within neuroblasts and thereby causes asymmetric spindles. Furthermore, the multiple equal cleavages of G beta mutant neuroblasts accompany neural defects; this finding suggests indispensable roles of eccentric division in assuring the stem cell properties of neuroblasts.  相似文献   

6.
In the nematode Caenorhabditis elegans, neurons are generated from asymmetric divisions in which a mother cell divides to produce daughters that differ in fate. Here, we demonstrate that the gene pig-1 regulates the asymmetric divisions of neuroblasts that divide to produce an apoptotic cell and either a neural precursor or a neuron. In pig-1 mutants, these neuroblasts divide to produce daughters that are more equal in size, and their apoptotic daughters are transformed into their sisters, leading to the production of extra neurons. PIG-1 is orthologous to MELK, a conserved member of the polarity-regulating PAR-1/Kin1/SAD-1 family of serine/threonine kinases. Although MELK has been implicated in regulating the cell cycle, our data suggest that PIG-1, like other PAR-1 family members, regulates cell polarity.  相似文献   

7.
Asymmetric cell division is a developmental process utilized by several organisms. On the most basic level, an asymmetric division produces two daughter cells, each possessing a different identity or fate. Drosophila melanogaster progenitor cells, referred to as neuroblasts, undergo asymmetric division to produce a daughter neuroblast and another cell known as a ganglion mother cell (GMC). There are several features of asymmetric division in Drosophila that make it a very complex process, and these aspects will be discussed at length. The cell fate determinants that play a role in specifying daughter cell fate, as well as the mechanisms behind setting up cortical polarity within neuroblasts, have proved to be essential to ensuring that neurogenesis occurs properly. The role that mitotic spindle orientation plays in coordinating asymmetric division, as well as how cell cycle regulators influence asymmetric division machinery, will also be addressed. Most significantly, malfunctions during asymmetric cell division have shown to be causally linked with neoplastic growth and tumor formation. Therefore, it is imperative that the developmental repercussions as a result of asymmetric cell division gone awry be understood.  相似文献   

8.
Yu F  Kuo CT  Jan YN 《Neuron》2006,51(1):13-20
Asymmetric cell division is an evolutionarily conserved mechanism widely used to generate cellular diversity during development. Drosophila neuroblasts have been a useful model system for studying the molecular mechanisms of asymmetric cell division. In this minireview, we focus on recent progress in understanding the role of heterotrimeric G proteins and their regulators in asymmetric spindle geometry, as well as the role of an Inscuteable-independent microtubule pathway in asymmetric localization of proteins in neuroblasts. We also discuss issues of progenitor proliferation and differentiation associated with asymmetric cell division and their broader implications for stem cell biology.  相似文献   

9.
Drosophila melanogaster neuroblasts (NBs) undergo asymmetric divisions during which cell-fate determinants localize asymmetrically, mitotic spindles orient along the apical-basal axis, and unequal-sized daughter cells appear. We identified here the first Drosophila mutant in the Ggamma1 subunit of heterotrimeric G protein, which produces Ggamma1 lacking its membrane anchor site and exhibits phenotypes identical to those of Gbeta13F, including abnormal spindle asymmetry and spindle orientation in NB divisions. This mutant fails to bind Gbeta13F to the membrane, indicating an essential role of cortical Ggamma1-Gbeta13F signaling in asymmetric divisions. In Ggamma1 and Gbeta13F mutant NBs, Pins-Galphai, which normally localize in the apical cortex, no longer distribute asymmetrically. However, the other apical components, Bazooka-atypical PKC-Par6-Inscuteable, still remain polarized and responsible for asymmetric Miranda localization, suggesting their dominant role in localizing cell-fate determinants. Further analysis of Gbetagamma and other mutants indicates a predominant role of Partner of Inscuteable-Galphai in spindle orientation. We thus suggest that the two apical signaling pathways have overlapping but different roles in asymmetric NB division.  相似文献   

10.
11.
Cell diversity in the Drosophila central nervous system (CNS) is primarily generated by the invariant lineage of neural precursors called neuroblasts. We used an enhancer trap screen to identify the ming gene, which is transiently expressed in a subset of neuroblasts at reproducible points in their cell lineage (i.e. in neuroblast 'sublineages'), suggesting that neuroblast identity can be altered during its cell lineage. ming encodes a predicted zinc finger protein and loss of ming function results in precise alterations in CNS gene expression, defects in axonogenesis and embryonic lethality. We propose that ming controls cell fate within neuroblast cell lineages.  相似文献   

12.
13.
Five thousand mutants of Herbaspirillum seropedicae SmR1 carrying random insertions of transposon pTnMod-OGmKmlacZ were screened for differential expression of LacZ in the presence of naringenin. Among the 16 mutants whose expression was regulated by naringenin were genes predicted to be involved in the synthesis of exopolysaccharides, lipopolysaccharides, and auxin. These loci are probably involved in establishing interactions with host plants.  相似文献   

14.
During asymmetric cell division, the mitotic spindle must be properly oriented to ensure the asymmetric segregation of cell fate determinants into only one of the two daughter cells. In Drosophila neuroblasts, spindle orientation requires heterotrimeric G proteins and the G alpha binding partner Pins, but how the Pins-G alphai complex interacts with the mitotic spindle is unclear. Here, we show that Pins binds directly to the microtubule binding protein Mud, the Drosophila homolog of NuMA. Like NuMA, Mud can bind to microtubules and enhance microtubule polymerization. In the absence of Mud, mitotic spindles in Drosophila neuroblasts fail to align with the polarity axis. This can lead to symmetric segregation of the cell fate determinants Brat and Prospero, resulting in the mis-specification of daughter cell fates and tumor-like over proliferation in the Drosophila nervous system. Our data suggest a model in which asymmetrically localized Pins-G alphai complexes regulate spindle orientation by directly binding to Mud.  相似文献   

15.
The RNA binding protein Larp1 was originally shown to be involved in spermatogenesis, embryogenesis and cell-cycle progression in Drosophila. Our data show that mammalian Larp1 is found in a complex with poly A binding protein and eukaryote initiation factor 4E and is associated with 60S and 80S ribosomal subunits. A reduction in Larp1 expression by siRNA inhibits global protein synthesis rates and results in mitotic arrest and delayed cell migration. Consistent with these data we show that Larp1 protein is present at the leading edge of migrating cells and interacts directly with cytoskeletal components. Taken together, these data suggest a role for Larp1 in facilitating the synthesis of proteins required for cellular remodelling and migration.  相似文献   

16.
Notch signaling mediates multiple developmental decisions in Drosophila. In this study, we have examined the role of Notch signaling in Drosophila larval optic lobe development. Loss of function in Notch or its ligand Delta leads to loss of the lamina and a smaller medulla. The neuroepithelial cells in the optic lobe in Notch or Delta mutant brains do not expand but instead differentiate prematurely into medulla neuroblasts, which lead to premature neurogenesis in the medulla. Clonal analyses of loss-of-function alleles for the pathway components, including N, Dl, Su(H), and E(spl)-C, indicate that the Delta/Notch/Su(H) pathway is required for both maintaining the neuroepithelial stem cells and inhibiting medulla neuroblast formation while E(spl)-C is only required for some aspects of the inhibition of medulla neuroblast formation. Conversely, Notch pathway overactivation promotes neuroepithelial cell expansion while suppressing medulla neuroblast formation and neurogenesis; numb loss of function mimics Notch overactivation, suggesting that Numb may inhibit Notch signaling activity in the optic lobe neuroepithelial cells. Thus, our results show that Notch signaling plays a dual role in optic lobe development, by maintaining the neuroepithelial stem cells and promoting their expansion while inhibiting their differentiation into medulla neuroblasts. These roles of Notch signaling are strikingly similar to those of the JAK/STAT pathway in optic lobe development, raising the possibility that these pathways may collaborate to control neuroepithelial stem cell maintenance and expansion, and their differentiation into the progenitor cells.  相似文献   

17.
Over the past decade, many of the key components of the genetic machinery that regulate the asymmetric division of Drosophila melanogaster neural progenitors, neuroblasts, have been identified and their functions elucidated. Studies over the past two years have shown that many of these identified components act to regulate the self-renewal versus differentiation decision and appear to function as tumor suppressors during larval nervous system development. In this paper, we highlight the growing number of molecules that are normally considered to be key regulators of cell cycle events/progression that have recently been shown to impinge on the neuroblast asymmetric division machinery to control asymmetric protein localization and/or the decision to self-renew or differentiate.  相似文献   

18.
19.
In the development of the Drosophila central nervous system, some of the neuroblasts designated as neuroglioblasts generate both glia and neurons. Little is known about how neuroglioblasts produce these different cell types. NB6-4 in the thoracic segment (NB6-4T) is a neuroglioblast, although the corresponding cell in the abdominal segment (NB6-4A) produces only glia. Here, we describe the cell divisions in the NB6-4T lineage, following changes in cell number and cell arrangement. We also examined successive changes in the expression of glial cells missing (gcm) mRNA and protein, activity of which is known to direct glial fate from the neuronal default state. The first cell division of NB6-4T occurred in the medial-lateral orientation, and was found to bifurcate the glial and neuronal lineage. After division, the medial daughter cell expressed GCM protein to produce three glial cells, while the lateral daughter cell with no GCM expression produced ganglion mother cells, secondary precursors of neurons. Although gcm mRNA was present evenly in the cytoplasm of NB6-4T before the first cell division, it became detected asymmetrically in the cell during mitosis and eventually only in the medial daughter cell. In contrast, NB6-4A showed a symmetrical distribution of gcm mRNA and GCM protein through division. Our observations suggest that mechanisms regulating gcm mRNA expression and its translation play an important role in glial and neuronal lineage bifurcation that results from asymmetric cell division.  相似文献   

20.
The Drosophila embryonic central nervous system develops from sets of progenitor neuroblasts which segregate from the neuroectoderm during early embryogenesis. Cells within this region can follow either the neural or epidermal developmental pathway, a decision guided by two opposing classes of genes. The proneural genes, including the members of the achaete-scute complex (AS-C), promote neurogenesis, while the neurogenic genes prevent neurogenesis and facilitate epidermal development. To understand the role that proneural gene expression and regulation play in the choice between neurogenesis and epidermogenesis, we examined the temporal and spatial expression pattern of the achaete (ac) regulatory protein in normal and neurogenic mutant embryos. The ac protein is first expressed in a repeating pattern of four ectodermal cell clusters per hemisegment. Even though 5-7 cells initially express ac in each cluster, only one, the neuroblast, continues to express ac. The repression of ac in the remaining cells of the cluster requires zygotic neurogenic gene function. In embryos lacking any one of five genes, the restriction of ac expression to single cells does not occur; instead, all cells of each cluster continue to express ac, enlarge, delaminate and become neuroblasts. It appears that one key function of the neurogenic genes is to silence proneural gene expression within the nonsegregating cells of the initial ectodermal clusters, thereby permitting epidermal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号