首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
3.
二氢黄酮醇-4-还原酶(DFR)是植物花青素合成过程中的关键酶,能够催化二氢黄酮醇生成无色花青素。该试验以红色和白色比利时杜鹃花(Rhododendron hybridum Hort.)不同器官和不同发育时期的花瓣为实验材料,利用反转录(RT-PCR)和RACE技术克隆RhDFR基因,利用植物酶联免疫试剂盒(ELISA)测定不同发育时期的花瓣RhDFR酶活性,利用qRT-PCR技术定量分析不同器官和不同发育时期的花瓣RhDFR基因,构建pET-28a-RhDFR原核表达载体对RhDFR蛋白进行制备和纯化,为进一步探究杜鹃花DFR基因功能以及花色的分子机理奠定基础。结果表明:(1)成功获得比利时杜鹃花RhDFR基因全长1 253 bp,其开放阅读框1 035 bp,编码344个氨基酸,含有1个NADPH结合保守基序和1个底物结合区域,具有高度保守性;系统进化分析显示,比利时杜鹃花RhDFR蛋白与越橘(Vaccinium corymbosum)DFR蛋白亲缘关系最近。(2)ELISA试剂盒分析显示,比利时杜鹃花不同发育时期的花瓣DFR酶活性呈先上升后下降的趋势,并于红花初开期和白花盛开期的...  相似文献   

4.
钟春水  赖瑞联  刘生财  赖钟雄 《广西植物》2016,36(12):1410-1415
该研究以富含儿茶素的金花茶愈伤组织为材料,对不同光源、激素、碳源及苯丙氨酸处理30 d的愈伤组织中DFR表达量、LAR表达量、PPO表达量与总儿茶素含量的变化情况及四者两两之间的相关性进行了分析.结果表明:这4个检测项目均对以上处理有显著的响应;在以上各因素处理下,DFR与LAR的表达模式十分相似,其相关系数处在0.710~0.889之间;在不同碳源处理下,PPO表达量与总儿茶素含量的变化呈显著负相关关系,其相关系数为-0.696;在不同苯丙氨酸添加量处理下,DFR与LAR表达量变化均与总儿茶素含量变化呈显著正相关关系,其相关系数分别为0.786和0.564;适宜儿茶素离体生产的金花茶愈伤组织增殖配方为附加4 mg·L-16-BA、0.6 mg·L-12,4-D、30 g·L-1蔗糖与0.6608 g·L-1苯丙氨酸的MS固体培养基,其总儿茶素含量可达40.11 mg·g-1 DW.以上研究表明,与茶树相似,在金花茶中DFR与LAR在儿茶素代谢过程中密切相关;PPO表达量升高导致金花茶儿茶素损失;添加适宜浓度的苯丙氨酸作为前体物质是提高愈伤组织中总儿茶素含量的有效措施.  相似文献   

5.
二氢黄酮醇4-还原酶(dihydroflavonol 4-reductase,DFR)是植物重要的次生代谢产物花青素生物合成途径中的关键酶。运用RT-PCR和RACE技术从新疆雪莲(Saussurea involucrata Kar.et Kir.)中克隆得到DFR基因(GenBank登录号为JN092126)。DFR基因的cDNA全长序列含有1个1 029 bp的开放阅读框(ORF),编码343个氨基酸,该基因推断的蛋白与水母雪莲DFR基因推断的蛋白高度同源,相似性达到92%;以不同物种中DFR氨基酸序列进行比对分析,推断的蛋白含有与NADPH特异结合的结构域。将该基因运用农杆菌介导的叶片转化法进行同源转化,将含有转DFR基因的愈伤组织进行悬浮培养,紫外分光光度法测定愈伤组织的总黄酮含量,结果表明转基因愈伤组织的总黄酮含量明显高于非转基因愈伤组织的含量。该研究为提高新疆雪莲药用化学成分黄酮类物质及实现新疆雪莲花青素的人工生物合成的研究奠定基础,对解决天山雪莲资源匮乏提供参考。  相似文献   

6.
Blue Angelonia × angustifolia flowers can show spontaneous mutations resulting in white/blue and white flower colourations. In such a white line, a loss of dihydroflavonol 4-reductase (DFR) activity was observed whereas chalcone synthase and flavanone 3-hydroxylase activity remained unchanged. Thus, cloning and characterization of a DFR of Angelonia flowers was carried out for the first time. Two full length DFR cDNA clones, Ang.DFR1 and Ang.DFR2, were obtained from a diploid chimeral white/blue Angelonia × angustifolia which demonstrated a 99% identity in their translated amino acid sequence. In comparison to Ang.DFR2, Ang.DFR1 was shown to contain an extra proline in a proline-rich region at the N-terminus along with two exchanges at the amino acids 12 and 26 in the translated amino acid sequence. The recombinant Ang.DFR2 obtained by heterologous expression in yeast was functionally active catalyzing the NADPH dependent reduction of dihydroquercetin (DHQ) and dihydromyricetin (DHM) to leucocyanidin and leucomyricetin, respectively. Dihydrokaempferol (DHK) in contrast was not accepted as a substrate despite the presence of asparagine in a position assumed to determine DHK acceptance. We show that substrate acceptance testing of DFRs provides biased results for DHM conversion if products are extracted with ethyl acetate. Recombinant Ang.DFR1 was inactive and functional activity could only be restored via exchanges of the amino acids in position 12 and 26 as well as the deletion of the extra proline. E. coli transformation of the pGEX-6P-1 vector harbouring the Ang.DFR2 and heterologous expression in E. coli resulted in functionally active enzymes before and after GST tag removal. Both the GST fusion protein and purified DFR minus the GST tag could be stored at −80°C for several months without loss of enzyme activity and demonstrated identical substrate specificity as the recombinant enzyme obtained from heterologous expression in yeast.  相似文献   

7.
8.
9.
  • Recently we elucidated that tobacco TTG2 cooperates with ARF8 to regulate the vegetative growth and seed production.
  • Here we show that TTG2 and ARF8 control flower colouring by regulating expression of ANS and DFR genes, which function in anthocyanin biosynthesis.
  • Genetic modifications that substantially altered expression levels of the TTG2 gene and production quantities of TTG2 protein were correlated with flower development and colouring. Degrees of flower colour were increased by TTG2 overexpression but decreased through TTG2 silencing, in coincidence with high and low concentrations of anthocyanins in flowers. Of five genes involved in the anthocyanin biosynthesis pathway, only ANS and DFR were TTG2‐regulated and displayed enhancement and diminution of expression with TTG2 overexpression and silencing, respectively. The floral expression of ANS and DFR also needed a functional ARF8 gene, as ANS and DFR expression were attenuated by ARF8 silencing, which concomitantly diminished the role of TTG2 in anthocyanin production. While ARF8 required TTG2 to be expressed by itself and to regulate ANS and DFR expression, the concurrent presence of normally functional TTG2 and ARF8 was critical for floral production of anthocyanins and also for flower colouration.
  • Our data suggest that TTG2 functions concomitantly with ARF8 to control degrees of flower colour by regulating expression of ANS and DFR, which are involved in the anthocyanin biosynthesis pathway. ARF8 depends on TTG2 to regulate floral expression of ANS and DFR with positive effects on anthocyanin production and flower colour.
  相似文献   

10.
11.
During fruit ripening, strawberries show distinct changes in the flavonoid classes that accumulate, switching from the formation of flavan 3-ols and flavonols in unripe fruits to the accumulation of anthocyanins in the ripe fruits. In the common garden strawberry (Fragaria×ananassa) this is accompanied by a distinct switch in the pattern of hydroxylation demonstrated by the almost exclusive accumulation of pelargonidin based pigments. In Fragaria vesca the proportion of anthocyanins showing one (pelargonidin) and two (cyanidin) hydroxyl groups within the B-ring is almost equal. We isolated two dihydroflavonol 4-reductase (DFR) cDNA clones from strawberry fruits, which show 82% sequence similarity. The encoded enzymes revealed a high variability in substrate specificity. One enzyme variant did not accept DHK (with one hydroxyl group present in the B-ring), whereas the other strongly preferred DHK as a substrate. This appears to be an uncharacterized DFR variant with novel substrate specificity. Both DFRs were expressed in the receptacle and the achenes of both Fragaria species and the DFR2 expression profile showed a pronounced dependence on fruit development, whereas DFR1 expression remained relatively stable. There were, however, significant differences in their relative rates of expression. The DFR1/DFR2 expression ratio was much higher in the Fragaria×ananassa and enzyme preparations from F.×ananassa receptacles showed higher capability to convert DHK than preparations from F. vesca. Anthocyanin concentrations in the F.×ananassa cultivar were more than twofold higher and the cyanidin:pelargonidin ratio was only 0.05 compared to 0.51 in the F. vesca cultivar. The differences in the fruit colour of the two Fragaria species can be explained by the higher expression of DFR1 in F.×ananassa as compared to F. vesca, a higher enzyme efficiency (K cat/K m values) of DFR1 combined with the loss of F3’H activity late in fruit development of F.×ananassa.  相似文献   

12.
The expression patterns of the genes involved in flavonoid biosynthesis and the changes in anthocyanin content were investigated in small radish (Raphanus sativus L. varsativus) seedlings during light treatment. Anthocyanin content increased until day 4, reaching about 100-fold greater than the control plants, then decreased.CHS (chalcone synthase) mRNA reached a maximum level at 4 h, remained at relatively high levels until day 3, and then decreased rapidly. TheCHI (chalcone isomerase) andDFR (dihydrofolate reductase) mRNA levels reached maximum at 6 h and day 2, respectively, but were decreased rapidly thereafter. All the genes were expressed strongly in hypocotyls, but were either expressed weakly in roots or not expressed at all in cotyledons. Genomic hybridization showed that theCHS gene belonged to a small multigene family, while theCHI andDFR genes were present in one copy per haploid genome.  相似文献   

13.
Genes up-regulated during red coloration in UV-B irradiated lettuce leaves   总被引:4,自引:0,他引:4  
Molecular analysis of gene expression differences between green and red lettuce leaves was performed using the SSH method. BlastX comparisons of subtractive expressed sequence tags (ESTs) indicated that 7.6% of clones encoded enzymes involved in secondary metabolism. Such clones had a particularly high abundance of flavonoid-metabolism proteins (6.5%). Following SSH, 566 clones were rescreened for differential gene expression using dot-blot hybridization. Of these, 53 were found to overexpressed during red coloration. The up-regulated expression of six genes was confirmed by Northern blot analyses. The expression of chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and dihydroflavonol 4-reductase (DFR) genes showed a positive correlation with anthocyanin accumulation in UV-B-irradiated lettuce leaves; flavonoid 3′,5′-hydroxylase (F3′,5′H) and anthocyanidin synthase (ANS) were expressed continuously in both samples. These results indicated that the genes CHS, F3H, and DFR coincided with increases in anthocyanin accumulation during the red coloration of lettuce leaves. This study show a relationship between red coloration and the expression of up-regulated genes in lettuce. The subtractive cDNA library and EST database described in this study represent a valuable resource for further research for secondary metabolism in the vegetable crops.  相似文献   

14.
We are approaching corolla differentiation in Compositae by studying the regulation of flavonoid pathway genes during inflorescence development in gerbera. We have cloned a dfr cDNA from a ray floret corolla cDNA library of Gerbera hybrida var. Regina by a PCR technique based on homologies found in genes isolated from other plant species. The functionality of the clone was tested in vivo by complementing the dihydrokaempferol accumulating petunia mutant line RL01. By Southern blot analysis, G. hybrida var. Regina was shown to harbour a small family of dfr genes, one member of which was deduced to be mainly responsible for the DFR activity in corolla. Dfr expression in corolla correlates with the anthocyanin accumulation pattern: it is basipetally induced, epidermally specific and restricted to the ligular part of corolla. By comparing the dfr expression in different floret types during inflorescence development, we could see that dfr expression reflects developmental schemes of the outermost ray and trans florets, contrasted with that of the disc florets.  相似文献   

15.
In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with the pallida gene from Antirrhinum majus and at the amino acid level with enzymes encoded by the pallida gene and the A1 gene from Zea mays.The P. hybrida and A. majus DFR genes transcribed in flowers contain 5 introns, at identical positions; the three introns of the A1 gene from Z. mays coincide with first three introns of the other two species. P. hybrida line V30 harbours three DFR genes (A, B, C) which were mapped by RFLP analysis on three different chromosomes (IV, II and VI respectively).Steady-state levels of DFR mRNA in the line V30 follow the same pattern during development as chalcone synthase (CHS) and chalcone flavanone isomerase (CHI) mRNA. Six mutants that accumulate dihydroflavonols in mature flowers were subjected to Northern blot analysis for the presence of DFR mRNA. Five of these mutants lack detectable levels of DFR mRNA. Four of these five also show drastically reduced levels of activity for the enzyme UDPG: flavonoid-3-O-glucosyltransferase (UFGT), which carries out the next step in flavonoid biosynthesis; these mutants might be considered as containing lesions in regulatory genes, controlling the expression of the structural genes in this part of the flavonoid biosynthetic pathway. Only the an6 mutant shows no detectable DFR mRNA but a wild-type level for UFGT activity. Since both an6 and DFR-A are located on chromosome IV and DFR-A is transcribed in floral tissues, it is postulated that the An6 locus contains the DFR structural gene. The an9 mutant shows a wild-type level of DFR mRNA and a wild-type UFGT activity.  相似文献   

16.
Orange- to red-colored flowers are difficult to produce by conventional breeding techniques in some floricultural plants. This is due to the deficiency in the formation of pelargonidin, which confers orange to red colors, in their flowers. Previous researchers have reported that brick-red colored flowers can be produced by introducing a foreign dihydroflavonol 4-reductase (DFR) with different substrate specificity in Petunia hybrida, which does not accumulate pelargonidin pigments naturally. However, because these experiments used dihydrokaempferol (DHK)-accumulated mutants as transformation hosts, this strategy cannot be applied directly to other floricultural plants. Thus in this study, we attempted to produce red-flowered plants by suppressing two endogenous genes and expressing one foreign gene using tobacco as a model plant. We used a chimeric RNAi construct for suppression of two genes (flavonol synthase [FLS] and flavonoid 3′-hydroxylase [F3H]) and expression of the gerbera DFR gene in order to accumulate pelargonidin pigments in tobacco flowers. We successfully produced red-flowered tobacco plants containing high amounts of additional pelargonidin as confirmed by HPLC analysis. The flavonol content was reduced in the transgenic plants as expected, although complete inhibition was not achieved. Expression analysis also showed that reduction of the two-targeted genes and expression of the foreign gene occurred simultaneously. These results demonstrate that flower color modification can be achieved by multiple gene regulation without use of mutants if the vector constructs are designed resourcefully. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
苦荞二氢黄酮醇4-还原酶(DFR)是花青素合成途径的关键酶。该研究以苦荞种子灌浆期cDNA为模板,采用RT-PCR方法克隆苦荞DFR编码基因,并将其连接到表达载体pET47b上,转化获得苦荞DFR编码基因的大肠杆菌BL21(DE3)工程菌,通过IPTG诱导表达,用SDS-PAGE分析表达产物,用亲和层析方法纯化蛋白,制备苦荞DFR多克隆抗体。RT-PCR技术获得了苦荞DFR编码基因的开放阅读框,重组表达载体经PCR和测序鉴定,表明表达载体构建成功,SDS-PAGE分析表达产物分别以可溶和不可溶的形式高效表达,亲和层析纯化得到融合蛋白,Western blotting显示,制备的多克隆抗体能特异识别其对应的抗原,天然的苦荞DFR蛋白在苦荞种子灌浆期中大量表达。苦荞DFR编码基因的原核表达与多克隆抗体的制备,为进一步开展DFR编码基因功能的研究奠定了基础。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号